Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Cullen numbers with the Lehmer property


Authors: José María Grau Ribas and Florian Luca
Journal: Proc. Amer. Math. Soc. 140 (2012), 129-134
MSC (2010): Primary 11A05; Secondary 11N25, 11A07
DOI: https://doi.org/10.1090/S0002-9939-2011-10899-2
Published electronically: May 20, 2011
Corrigendum: Proc. Amer. Math. Soc. 141 (2013), 2941-2943
MathSciNet review: 2833524
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Here, we show that there is no positive integer $ n$ such that the $ n$th Cullen number $ C_n=n2^n+1$ has the property that it is composite but $ \phi(C_n)\mid C_n-1$.


References [Enhancements On Off] (What's this?)

  • 1. W. D. Banks, A. M. Güloğlu and C. W. Nevans, `On the congruence $ N\equiv A\pmod {\varphi(N)}$', Integers 8 (2008), #A59. MR 2472077 (2010g:11154)
  • 2. W. D. Banks and F. Luca, `Composite integers $ n$ for which $ \varphi(n)\mid n-1$', Acta Math. Sinica 23 (2007), 1915-1918. MR 2352307 (2008j:11134)
  • 3. P.  Berrizbeitia and J.  G.  Fernandes, `Observaciones sobre la primalidad de los números de Cullen', short communication in ``Terceras Jornadas de Teoría de Números'' (http://campus.usal.es/$ \sim$tjtn2009/doc/abstracts.pdf).
  • 4. J. Cilleruelo and F. Luca, `Repunit Lehmer numbers', Proc. Edinburgh Math. Soc. 54 (2011), 55-65.
  • 5. G.  L.  Cohen and P. Hagis, `On the number of prime factors of $ n$ if $ \phi(n)\mid n-1$', Nieuw Arch. Wisk. 28 (1980), 177-185. MR 582925 (81j:10002)
  • 6. J. M. Grau and A. M. Oller-Marcén, `An $ {\widetilde{O}}(\log^2 N)$ time primality test for generalized Cullen numbers', preprint, 2010, to appear in Math. Comp.
  • 7. F. Heppner, `Über Primzahlen der Form $ n2^n + 1$ bzw. $ p2^p + 1$', Monatsh. Math. 85 (1978), 99-103. MR 0567136 (58:27859)
  • 8. C. Hooley, Applications of sieve methods to the theory of numbers, Cambridge University Press, Cambridge, 1976. MR 0404173 (53:7976)
  • 9. F. Luca, `Fibonacci numbers with the Lehmer property', Bull. Pol. Acad. Sci. Math. 55 (2007), 7-15. MR 2304295 (2008g:11024)
  • 10. F. Luca, `On the greatest common divisor of two Cullen numbers', Abh. Math. Sem. Univ. Hamburg 73 (2003), 253-270. MR 2028519 (2004i:11001)
  • 11. F. Luca and C. Pomerance, `On composite integers $ n$ for which $ \phi(n)\mid n-1$', Bol. Soc. Mat. Mexicana, to appear.
  • 12. F. Luca and I.  E.  Shparlinski, `Pseudoprime Cullen and Woodall numbers', Colloq. Math. 107 (2007), 35-43. MR 2283130 (2007i:11127)
  • 13. C.  Pomerance, `On the distribution of amicable numbers', J. reine angew. Math. 293/294 (1977), 217-222. MR 0447087 (56:5402)
  • 14. C. Pomerance, `On composite $ n$ for which $ \varphi(n)\mid n-1$, II', Pacific J. Math. 69 (1977), 177-186. MR 0434938 (55:7901)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 11A05, 11N25, 11A07

Retrieve articles in all journals with MSC (2010): 11A05, 11N25, 11A07


Additional Information

José María Grau Ribas
Affiliation: Departamento de Mátematicas, Universidad de Oviedo, Avenida Calvo Sotelo, s/n, 33007 Oviedo, Spain
Email: grau@uniovi.es

Florian Luca
Affiliation: Instituto de Matemáticas, Universidad Nacional Autonoma de México, C.P. 58089, Morelia, Michoacán, México
Email: fluca@matmor.unam.mx

DOI: https://doi.org/10.1090/S0002-9939-2011-10899-2
Received by editor(s): October 14, 2010
Received by editor(s) in revised form: November 11, 2010
Published electronically: May 20, 2011
Communicated by: Matthew A. Papanikolas
Article copyright: © Copyright 2011 American Mathematical Society

American Mathematical Society