Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A metric between quasi-isometric trees


Author: Álvaro Martínez-Pérez
Journal: Proc. Amer. Math. Soc. 140 (2012), 325-335
MSC (2010): Primary 54E40, 30C65, 53C23; Secondary 54E40
DOI: https://doi.org/10.1090/S0002-9939-2011-11286-3
Published electronically: August 11, 2011
MathSciNet review: 2833543
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: It is known that PQ-symmetric maps on the boundary characterize the quasi-isometry type of visual hyperbolic spaces, in particular, of geodesically complete $ \mathbb{R}$-trees. We define a map on pairs of PQ-symmetric ultrametric spaces which characterizes the branching of the space. We also show that when the ultrametric spaces are the corresponding end spaces, this map defines a metric between rooted geodesically complete simplicial trees with minimal vertex degree 3 in the same quasi-isometry class. Moreover, this metric measures how far the trees are from being rooted isometric.


References [Enhancements On Off] (What's this?)

  • 1. L. V. Ahlfors, Lectures on Quasiconformal Mappings. Second edition. With supplemental chapters by C. J. Earle, I. Kra, M. Shishikura and J. H. Hubbard. University Lecture Series, 38. American Mathematical Society, Providence, RI, 2006. MR 2241787 (2009d:30001)
  • 2. M. Bonk and O. Schramm, Embeddings of Gromov hyperbolic spaces. Geom. Funct. Anal. 10, No. 2 (2000), 266-306. MR 1771428 (2001g:53077)
  • 3. M. Bridson and A. Haefliger, Metric spaces of non-positive curvature. Springer-Verlag, Berlin, 1999. MR 1744486 (2000k:53038)
  • 4. S. Buyalo and V. Schroeder, Elements of Asymptotic Geometry. EMS Monographs in Mathematics. EMS Publishing House, Zürich, 2007. MR 2327160 (2009a:53068)
  • 5. V. Z. Feĭnberg, Compact ultrametric spaces. Dokl. Akad. Nauk SSSR 214 (1974), 1041-1044. MR 0348715 (50:1212)
  • 6. É. Ghys and P. de la Harpe, Sur les groupes hyperboliques d'après Mikhael Gromov Progr. Math. 83, Birkhäuser, Boston, MA, 1990. MR 1086648 (92f:53050)
  • 7. J. Heinonen, Lectures on analysis on metric spaces, Universitext, Springer-Verlag, New York, 2001. MR 1800917 (2002c:30028)
  • 8. J. H. Hubbard, Teichmüller Theory and Applications to Geometry, Topology, and Dynamics. (Volume I: Teichmüller Theory). Matrix Editions, Ithaca, NY, 2006. MR 2245223 (2008k:30055)
  • 9. B. Hughes, Trees and ultrametric spaces: a categorical equivalence. Adv. Math. 189 (2004), 148-191. MR 2093482 (2005m:57001)
  • 10. B. Hughes, Á. Martínez-Pérez and M. A. Morón, Bounded distortion homeomorphisms on ultrametric spaces. Ann. Acad. Sci. Fenn. Math. 35 (2010), 473-492. MR 2731702
  • 11. Á. Martínez-Pérez and M. A. Morón, Uniformly continuous maps between ends of $ \mathbb{R}$-trees. Math. Z. 263, No. 3 (2009), 583-606. MR 2545858 (2010j:54049)
  • 12. Á. Martínez-Pérez, Quasi-isometries between visual hyperbolic spaces. Manuscripta Math. (2011), DOI 10.1007/s00229-011-0463-8.
  • 13. L. Mosher, M. Sageev and K. Whyte, Quasi-actions on trees I. Bounded valence. Ann. of Math. (2) 158 (2003), 115-164. MR 1998479 (2004h:20055)
  • 14. F. Paulin, Un groupe hyperbolique est déterminé par son bord. J. Lond. Math. Soc. (2) 54 (1996), 50-74. MR 1395067 (97d:20042)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 54E40, 30C65, 53C23, 54E40

Retrieve articles in all journals with MSC (2010): 54E40, 30C65, 53C23, 54E40


Additional Information

Álvaro Martínez-Pérez
Affiliation: Departamento de Geometría y Topología, Universidad Complutense de Madrid, Madrid 28040, Spain
Email: alvaro_martinez@mat.ucm.es

DOI: https://doi.org/10.1090/S0002-9939-2011-11286-3
Keywords: Tree, real tree, ultrametric, end space, bounded distortion equivalence, quasi-isometry, PQ-symmetric, pseudo-doubling metric space
Received by editor(s): August 6, 2010
Published electronically: August 11, 2011
Additional Notes: The author was partially supported by MTM 2009-07030.
Communicated by: Alexander N. Dranishnikov
Article copyright: © Copyright 2011 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society