Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On the irreducible components of the singular locus of $ A_{g}$. II


Authors: V. González-Aguilera, J. M. Munoz-Porras and A. G. Zamora
Journal: Proc. Amer. Math. Soc. 140 (2012), 479-492
MSC (2010): Primary 14K10, 14K22; Secondary 14D15
DOI: https://doi.org/10.1090/S0002-9939-2011-10933-X
Published electronically: June 16, 2011
MathSciNet review: 2846316
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In our earlier paper it was proved that the singular locus of $ A_{g}$ (coarse moduli space of principally polarized abelian varieties over $ \mathbb{C}$) is expressed as the union of irreducible varieties $ A_{g}(p,\alpha )$ representing abelian varieties with an order $ p$ automorphism of fixed entire representation. In this paper we prove that $ A_{g}(p,\alpha )$ is an irreducible component of Sing$ A_{g}$ if and only if for a general element of this variety its automorphism group modulo $ \{\pm 1\}$, $ G_{+}$, satisfies the equivalent conditions: $ G_{+}=\langle \alpha \rangle $ or $ N_{G_{+}}(\langle \alpha \rangle )=\langle \alpha \rangle $. We illustrate how these results can be used by studying the case $ g=4$ and $ p=5$.


References [Enhancements On Off] (What's this?)

  • 1. H. Bennama and J. Bertin, Remarques sur les variétés abéliennes avec un automorphisme d'ordre premier, Manuscripta Math. 94 (1997), 409-425. MR 1484635 (99e:14050)
  • 2. C. Birkenhake and H. Lange, Complex abelian varieties, Springer-Verlag (Second Edition), 2004. MR 2062673 (2005c:14001)
  • 3. C. W. Curtis, Representation theory of finite groups and associative algebras, Pure and Appl. Math., vol. XI, Interscience, 1962. MR 0144979 (26:2519)
  • 4. V. González-Aguilera, J. M. Muñoz-Porras and A. G. Zamora, On the irreducible components of the singular locus of $ A_{g}$, Journal of Algebra 240 (2001), 230-250. MR 1830552 (2002b:14054)
  • 5. V. González-Aguilera, J. M. Muñoz-Porras and A. G. Zamora, On the 0-dimensional irreducible components of the singular locus of $ A_{g}$, Archiv der Mathematik 84 (2005), 298-303. MR 2135039 (2006b:14076)
  • 6. V. González-Aguilera, J. M. Muñoz-Porras and A. G. Zamora, Some recent results on the irreducible components of the singular locus of $ A_{g}$, Contemporary Mathematics 397, Amer. Math. Soc., 2006, 119-126. MR 2218002 (2007b:14099)
  • 7. D. Mumford, Abelian varieties, Oxford University Press, 1970. MR 0282985 (44:219)
  • 8. F. Oort, Finite group schemes, local moduli for abelian varieties and lifting problem, Algebraic Geometry, Oslo, 1970, Wolters-Noordhoff (1971), 265-296. MR 0301026 (46:186)
  • 9. F. Oort, Singularities of coarse moduli schemes, Sem. Dubreil, Lecture Notes in Math. 586, Springer, 1977, 61-76. MR 518011 (80e:14002)
  • 10. I. Reiner, Integral representations of cyclic groups of prime order, Proc. Amer. Math. Soc. 8 (1957), 142-146. MR 0083493 (18:717a)
  • 11. G. Shimura, Abelian varieties with complex multiplication and modular functions, Princeton University Press, 1998. MR 1492449 (99e:11076)
  • 12. L. Washington, Introduction to cyclotomic fields (Second Edition), Grad. Texts in Math. 83, Springer-Verlag, 1997. MR 1421575 (97h:11130)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 14K10, 14K22, 14D15

Retrieve articles in all journals with MSC (2010): 14K10, 14K22, 14D15


Additional Information

V. González-Aguilera
Affiliation: Departamento de Matemáticas, Universidad Técnica Federico Santa María, Casilla 110-V, Valparaíso, Chile
Email: victor.gonzalez@usm.cl

J. M. Munoz-Porras
Affiliation: Departamento de Matemáticas, Universidad de Salamanca, Plaza de la Merced 1-4, Salamanca 37008, Spain
Email: jmp@usal.es

A. G. Zamora
Affiliation: Departamento de Matemáticas, Universidad Autónoma de Zacatecas, Camino a la Bufa y Calzada Solidaridad, C.P. 98000, Zacatecas, Zac., México
Email: alexiszamora06@gmail.com

DOI: https://doi.org/10.1090/S0002-9939-2011-10933-X
Received by editor(s): May 4, 2010
Received by editor(s) in revised form: September 17, 2010, and November 30, 2010
Published electronically: June 16, 2011
Additional Notes: The first author was partially supported by Fondecyt Grant 1080030 and UTFSM’s DGIP
The third author was partially supported by CoNaCyT Grant 25811
Communicated by: Lev Borisov
Article copyright: © Copyright 2011 American Mathematical Society

American Mathematical Society