Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Random groups have fixed points on $ \mathrm{CAT}(0)$ cube complexes


Authors: Koji Fujiwara and Tetsu Toyoda
Journal: Proc. Amer. Math. Soc. 140 (2012), 1023-1031
MSC (2010): Primary 53C23; Secondary 20F65, 20P05, 51F99
DOI: https://doi.org/10.1090/S0002-9939-2011-11343-1
Published electronically: October 4, 2011
MathSciNet review: 2869086
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that a random group has fixed points when it isometrically acts on a $ \textrm {CAT}(0)$ cube complex. We do not assume that the action is simplicial.


References [Enhancements On Off] (What's this?)

  • 1. M. R. Bridson and A. Haefliger.
    Metric spaces of non-positive curvature, volume 319 of Grundlehren der Mathematischen Wissenschaften.
    Springer-Verlag, Berlin, 1999. MR 1744486 (2000k:53038)
  • 2. J. Brodzki, S. J. Campbell, E. Guentner, G. A. Niblo, and N. J. Wright.
    Property A and $ \rm CAT(0)$ cube complexes.
    J. Funct. Anal., 256(5):1408-1431, 2009. MR 2490224 (2010i:20044)
  • 3. P. de la Harpe and A. Valette.
    La propriété $ (T)$ de Kazhdan pour les groupes localement compacts.
    Astérisque 175:158, 1989. MR 1023471 (90m:22001)
  • 4. M. Gromov.
    Random walk in random groups.
    Geom. Funct. Anal., 13(1):73-146, 2003. MR 1978492 (2004j:20088a)
  • 5. H. Izeki, T. Kondo, and S. Nayatani.
    Fixed-point property of random groups.
    Ann. Global Anal. Geom., 35(4):363-379, 2009. MR 2506240 (2010d:20050)
  • 6. H. Izeki, T. Kondo, and S. Nayatani.
    $ N$-step energy of maps and fixed-point property of random groups.
    Groups Geom. Dyn., to appear.
  • 7. H. Izeki and S. Nayatani.
    Combinatorial harmonic maps and discrete-group actions on Hadamard spaces.
    Geom. Dedicata, 114:147-188, 2005. MR 2174098 (2006k:58024)
  • 8. T. Kondo.
    $ {\rm CAT}(0)$ spaces and expanders.
    Math. Z., to appear.
  • 9. M. Mendel and A. Naor.
    Towards a Calculus for Non-Linear Spectral Gaps [Extended Abstract].
    Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms, 236-255, 2010.
  • 10. G. Niblo and L. Reeves.
    Groups acting on $ {\rm CAT}(0)$ cube complexes.
    Geom. Topol., 1:1-7, 1997. MR 1432323 (98d:57005)
  • 11. J. Roe.
    Lectures on Coarse Geometry, volume 31 of University Lecture Series.
    American Mathematical Society, Providence, RI, 2003. MR 2007488 (2004g:53050)
  • 12. L. Silberman.
    Addendum to: ``Random walk in random groups''.
    Geom. Funct. Anal., 13(1):147-177, 2003. MR 1978493 (2004j:20088b)
  • 13. T. Toyoda.
    $ {\rm CAT}(0)$ spaces on which a certain type of singularity is bounded.
    Kodai Math. J., 33:398-415, 2010. MR 2754329
  • 14. T. Toyoda.
    Fixed point property for a $ {\rm CAT}(0)$ space which admits a proper cocompact group action.
    Preprint, 2010. arXiv:1102.0729
  • 15. M.-T. Wang.
    Generalized harmonic maps and representations of discrete groups.
    Comm. Anal. Geom., 8(3):545-563, 2000. MR 1775138 (2001m:58039)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 53C23, 20F65, 20P05, 51F99

Retrieve articles in all journals with MSC (2010): 53C23, 20F65, 20P05, 51F99


Additional Information

Koji Fujiwara
Affiliation: Graduate School of Information Science, Tohoku University, Aoba-ku, Sendai, Miyagi, 980-8579, Japan
Email: fujiwara@math.is.tohoku.ac.jp

Tetsu Toyoda
Affiliation: Graduate School of Mathematics, Nagoya University, Chikusa-ku, Nagoya, 464-8602, Japan
Email: tetsu.toyoda@math.nagoya-u.ac.jp

DOI: https://doi.org/10.1090/S0002-9939-2011-11343-1
Received by editor(s): December 17, 2010
Received by editor(s) in revised form: December 19, 2010
Published electronically: October 4, 2011
Additional Notes: The first author is supported by Grant-in-Aid for Scientific Research (No. 19340013).
Communicated by: Ken Ono
Article copyright: © Copyright 2011 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society