Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On the centralizers in the Weyl algebra


Authors: Jorge A. Guccione, Juan J. Guccione and Christian Valqui
Journal: Proc. Amer. Math. Soc. 140 (2012), 1233-1241
MSC (2010): Primary 16S32
DOI: https://doi.org/10.1090/S0002-9939-2011-11017-7
Published electronically: August 12, 2011
MathSciNet review: 2869108
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ P,Q$ be elements of the Weyl algebra $ W$. We prove that if $ [Q,P]=1$, then the centralizer of $ P$ is the polynomial algebra $ k[P]$.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 16S32

Retrieve articles in all journals with MSC (2010): 16S32


Additional Information

Jorge A. Guccione
Affiliation: Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria-Pabellón 1, (C1428EGA) Buenos Aires, Argentina
Email: vander@dm.uba.ar

Juan J. Guccione
Affiliation: Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria-Pabellón 1, (C1428EGA) Buenos Aires, Argentina
Email: jjgucci@dm.uba.ar

Christian Valqui
Affiliation: Pontificia Universidad Católica del Perú, Instituto de Matemática y Ciencias Afines, Sección Matemáticas, PUCP, Av. Universitaria 1801, San Miguel, Lima 32, Perú
Email: cvalqui@pucp.edu.pe

DOI: https://doi.org/10.1090/S0002-9939-2011-11017-7
Keywords: Weyl algebra, centralizers
Received by editor(s): March 30, 2010
Received by editor(s) in revised form: January 5, 2011
Published electronically: August 12, 2011
Additional Notes: The first author was supported by UBACYT 095, PIP 112-200801-00900 (CONICET) and PUCP-DAI-2009-0042
The second author was supported by UBACYT 095, PICT 2006 00836 (FONCYT) and PIP 112-200801-00900 (CONICET). He is thankful for the appointment as a visiting professor “Cátedra José Tola Pasquel” and for the hospitality during his stay at the PUCP
The third author was supported by PUCP-DAI-2009-0042, Lucet 90-DAI-L005, SFB 478 U. Münster, Konrad Adenauer Stiftung.
Communicated by: Harm Derksen
Article copyright: © Copyright 2011 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society