Tangent bundles to regular basic sets in hyperbolic dynamics

Author:
Luchezar Stoyanov

Journal:
Proc. Amer. Math. Soc. **140** (2012), 1623-1631

MSC (2010):
Primary 37D20, 37D40

Published electronically:
August 18, 2011

MathSciNet review:
2869147

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Given a locally maximal compact invariant hyperbolic set for a flow or diffeomorphism on a Riemann manifold with stable laminations, we construct an invariant continuous bundle of tangent vectors to local unstable manifolds that locally approximates in a certain way.

**[B]**R. Bowen,*Symbolic dynamics for hyperbolic flows*, Amer. J. Math.**95**(1973), 429-460. MR**0339281 (49:4041)****[Ch]**N. Chernov,*Invariant measures for hyperbolic dynamical systems,*in: Handbook of Dynamical Systems, ed. by A. Katok and B. Hasselblatt, Vol. 1A, pp. 321-407, North-Holland, Amsterdam, 2002. MR**1928521 (2003g:37047)****[D]**D. Dolgopyat,*On decay of correlations in Anosov flows*, Ann. of Math. (2)**147**(1998), 357-390. MR**1626749 (99g:58073)****[GP]**V. Guillemin and A. Polack, Differential topology, Prentice Hall, New Jersey, 1974. MR**0348781 (50:1276)****[Ha]**B. Hasselblatt,*Regularity of the Anosov splitting and of horospheric foliations*, Ergod. Th. & Dynam. Sys.**14**(1994), 645-666. MR**1304137 (95j:58130)****[Ka]**M. Kapovich, Kleinian groups in higher dimensions, Progress in Mathematics, Vol. 265, Birkhäuser Basel, 2008, 485-562. MR**2402415 (2009g:30043)****[KH]**A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, Cambridge Univ. Press, Cambridge, 1995. MR**1326374 (96c:58055)****[M]**B. Malgrange, Ideals of differentiable functions, Oxford University Press, 1966. MR**0212575 (35:3446)****[PSW]**C. Pugh, M. Shub and A. Wilkinson,*Hölder foliations*, Duke Math. J.**86**(1997), 517-546; Correction: Duke Math. J.**105**(2000), 105-106. MR**1432307 (97m:58155)**; MR**1788044 (2001h:37057)****[Ratc]**J. G. Ratcliffe, Foundations of hyperbolic manifolds, Springer-Verlag, New York, 1994. MR**1299730 (95j:57011)****[St1]**L. Stoyanov,*Exponential instability and entropy for a class of dispersing billiards*, Ergod. Th. & Dynam. Sys.**19**(1999), 201-226. MR**1677157 (99m:58149)****[St2]**L. Stoyanov,*Spectra of Ruelle transfer operators for Axiom A flows*, Nonlinearity**24**(2011), 1089-1120.**[St3]**L. Stoyanov,*Non-integrability of open billiard flows and Dolgopyat type estimates*, Ergod. Th. & Dynam. Sys., to appear, doi:10.1017/S0143385710000933.**[St4]**L. Stoyanov,*Pinching conditions, linearization and regularity of Axiom A flows*, preprint (arXiv: math.DS:1010.1594).**[Su]**D. Sullivan,*Entropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleinian groups*, Acta Math.**153**(1984), 259-278. MR**766265 (86c:58093)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2010):
37D20,
37D40

Retrieve articles in all journals with MSC (2010): 37D20, 37D40

Additional Information

**Luchezar Stoyanov**

Affiliation:
School of Mathematics, University of Western Australia, Crawley, WA 6009, Australia

Email:
stoyanov@maths.uwa.edu.au

DOI:
https://doi.org/10.1090/S0002-9939-2011-11001-3

Received by editor(s):
July 28, 2010

Received by editor(s) in revised form:
November 27, 2010, and January 10, 2011

Published electronically:
August 18, 2011

Additional Notes:
The author thanks the referee for useful comments and suggestions.

Communicated by:
Bryna Kra

Article copyright:
© Copyright 2011
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.