Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

Request Permissions   Purchase Content 
 

 

On a discrete version of Tanaka's theorem for maximal functions


Authors: Jonathan Bober, Emanuel Carneiro, Kevin Hughes and Lillian B. Pierce
Journal: Proc. Amer. Math. Soc. 140 (2012), 1669-1680
MSC (2010): Primary 42B25, 46E35
Published electronically: September 1, 2011
Corrigendum: Proc. Amer. Math. Soc. 143 (2015), 5471-5473.
MathSciNet review: 2869151
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we prove a discrete version of Tanaka's theorem for the Hardy-Littlewood maximal operator in dimension $ n=1$, both in the non-centered and centered cases. For the non-centered maximal operator $ \widetilde{M}$ we prove that, given a function $ f: \mathbb{Z} \to \mathbb{R}$ of bounded variation,

$\displaystyle \operatorname{Var}(\widetilde{M} f) \leq \operatorname{Var}(f),$

where $ \operatorname{Var}(f)$ represents the total variation of $ f$. For the centered maximal operator $ M$ we prove that, given a function $ f: \mathbb{Z} \to \mathbb{R}$ such that $ f \in \ell^1(\mathbb{Z})$,

$\displaystyle \operatorname{Var}(Mf) \leq C \Vert f\Vert _{\ell^1(\mathbb{Z})}.$

This provides a positive solution to a question of Hajłasz and Onninen in the discrete one-dimensional case.


References [Enhancements On Off] (What's this?)

  • 1. J. M. Aldaz and J. Pérez Lázaro,
    Functions of bounded variation, the derivative of the one dimensional maximal function, and applications to inequalities,
    Trans. Amer. Math. Soc. 359 (2007), no. 5, 2443-2461. MR 2276629 (2008f:42010)
  • 2. J. Bourgain,
    On the maximal ergodic theorem for certain subsets of the integers,
    Israel J. Math. 61 (1988) 39-72. MR 937581 (89f:28037a)
  • 3. J. Bourgain,
    On the pointwise ergodic theorem on $ {L}^p$ for arithmetic sets,
    Israel J. Math. 61 (1988) 73-84. MR 937582 (89f:28037b)
  • 4. E. Carneiro and D. Moreira,
    On the regularity of maximal operators,
    Proc. Amer. Math. Soc. 136 (2008), no. 12, 4395-4404. MR 2431055 (2009m:42030)
  • 5. P. Hajłasz and J. Malý,
    On approximate differentiability of the maximal function,
    Proc. Amer. Math. Soc. 138 (2010), no. 1, 165-174. MR 2550181 (2010i:42040)
  • 6. P. Hajłasz and J. Onninen,
    On boundedness of maximal functions in Sobolev spaces,
    Ann. Acad. Sci. Fenn. Math. 29 (2004), no. 1, 167-176. MR 2041705 (2005a:42010)
  • 7. A. D. Ionescu, A. Magyar, E. M. Stein and S. Wainger,
    Discrete Radon transforms and applications to ergodic theory,
    Acta Math. 198 (2007) 231-298. MR 2318564 (2008i:43007)
  • 8. A. D. Ionescu and S. Wainger,
    $ {L}^p$ boundedness of discrete singular Radon transforms,
    J. Amer. Math. Soc. 19 (2005), no. 2, 357-383. MR 2188130 (2006g:42019)
  • 9. J. Kinnunen,
    The Hardy-Littlewood maximal function of a Sobolev function,
    Israel J. Math. 100 (1997), 117-124. MR 1469106 (99a:30029)
  • 10. J. Kinnunen and P. Lindqvist,
    The derivative of the maximal function,
    J. Reine Angew. Math. 503 (1998), 161-167. MR 1650343 (99j:42027)
  • 11. J. Kinnunen and E. Saksman,
    Regularity of the fractional maximal function,
    Bull. London Math. Soc. 35 (2003), no. 4, 529-535. MR 1979008 (2004e:42035)
  • 12. H. Luiro,
    Continuity of the maximal operator in Sobolev spaces,
    Proc. Amer. Math. Soc. 135 (2007), no. 1, 243-251. MR 2280193 (2007i:42021)
  • 13. A. Magyar, E. M. Stein and S. Wainger,
    Discrete analogues in harmonic analysis: Spherical averages,
    Ann. Math. (2) 155 (2002), 189-208. MR 1888798 (2003f:42028)
  • 14. L. B. Pierce,
    Discrete fractional Radon transforms and quadratic forms,
    to appear in Duke Math. J.
  • 15. E. M. Stein,
    Harmonic Analysis: Real Variable Methods, Orthogonality, and Oscillatory Integrals,
    Princeton University Press, 1993. MR 1232192 (95c:42002)
  • 16. E. M. Stein and S. Wainger,
    Discrete analogues in harmonic analysis. I: $ \ell^2$ estimates for singular Radon transforms,
    Amer. J. Math. 121 (1999), 1291-1336. MR 1719802 (2000j:42027)
  • 17. E. M. Stein and S. Wainger,
    Discrete analogues in harmonic analysis. II: Fractional integration,
    J. d'Analyse Math. 80 (2000), 335-355. MR 1771530 (2001g:42038)
  • 18. E. M. Stein and S. Wainger,
    Two discrete fractional integral operators revisited,
    J. d'Analyse Math. 87 (2002), 451-479. MR 1945293 (2004a:39040)
  • 19. H. Tanaka,
    A remark on the derivative of the one-dimensional Hardy-Littlewood maximal function,
    Bull. Austral. Math. Soc. 65 (2002), no. 2, 253-258. MR 1898539 (2002m:42017)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 42B25, 46E35

Retrieve articles in all journals with MSC (2010): 42B25, 46E35


Additional Information

Jonathan Bober
Affiliation: School of Mathematics, Institute for Advanced Study, Einstein Drive, Princeton, New Jersey 08540
Address at time of publication: Department of Mathematics, Box 354350, University of Washington, Seattle, Washington 98195-4350
Email: bober@math.ias.edu, jwbober@uw.edu

Emanuel Carneiro
Affiliation: School of Mathematics, Institute for Advanced Study, Einstein Drive, Princeton, New Jersey 08540
Address at time of publication: Instituto de Matematica Pura e Aplicada–IMPA, Estrada Dona Castorina 110, Rio de Janeiro, RJ, 22460-320, Brazil
Email: ecarneiro@math.ias.edu, carneiro@impa.br

Kevin Hughes
Affiliation: Department of Mathematics, Princeton University, Fine Hall, Washington Road, Princeton, New Jersey 08544
Email: kjhughes@math.princeton.edu

Lillian B. Pierce
Affiliation: School of Mathematics, Institute for Advanced Study, Einstein Drive, Princeton, New Jersey 08540
Address at time of publication: Mathematical Institute, 24-29 St Giles, Oxford OX1 3LB, United Kingdom
Email: lbpierce@math.ias.edu, lillian.pierce@maths.ox.ac.uk

DOI: http://dx.doi.org/10.1090/S0002-9939-2011-11008-6
Keywords: Maximal operators, Sobolev spaces, discrete operators, Tanaka’s theorem.
Received by editor(s): May 6, 2010
Received by editor(s) in revised form: January 14, 2011
Published electronically: September 1, 2011
Communicated by: Thomas Schlumprecht
Article copyright: © Copyright 2011 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.