Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

Request Permissions   Purchase Content 
 

 

A note on the Hitchin-Thorpe inequality and Ricci flow on 4-manifolds


Authors: Yuguang Zhang and Zhenlei Zhang
Journal: Proc. Amer. Math. Soc. 140 (2012), 1777-1783
MSC (2010): Primary 53C44
Published electronically: September 7, 2011
MathSciNet review: 2869163
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this short paper, we prove a Hitchin-Thorpe type inequality for closed 4-manifolds with non-positive Yamabe invariant and admitting long time solutions of the normalized Ricci flow equation with bounded scalar curvature.


References [Enhancements On Off] (What's this?)

  • 1. K. Akutagawa, M. Ishida, and C. LeBrun, Perelman's invariant, Ricci flow, and the Yamabe invariants of smooth manifolds, Arch. Math. 88 (2007), 71-76. MR 2289603 (2007j:53070)
  • 2. M. T. Anderson, Remarks on Perelman's papers, preprint, available at http://www.math. sunysb.edu/~anderson/perelman.pdf.
  • 3. A. L. Besse, Einstein manifolds, Ergebnisse der Math. Springer-Verlag, Berlin-New York, 1987. MR 867684 (88f:53087)
  • 4. H. D. Cao, Deformation of Kähler metrics on compact Kähler manifolds, Invent. Math. 81 (1985), 359-372. MR 799272 (87d:58051)
  • 5. F. Fang, Y. Zhang, Perelman's $ \lambda$-functional and the Seiberg-Witten equations, Frontiers of Mathematics in China, 2, no. 2 (2007), 191-210. MR 2299748 (2008e:53051)
  • 6. F. Fang, Y. Zhang and Z. L. Zhang, Non-singular solutions to the normalized Ricci flow equation, Math. Ann. 340 (2008), 647-674. MR 2357999 (2009a:53112)
  • 7. F. Fang, Y. Zhang and Z. L. Zhang, Non-singular solutions of normalized Ricci flow on noncompact manifolds of finite volume, Journal of Geometric Analysis, 20, no. 3 (2010), 592-608. MR 2610891
  • 8. R. Hamilton, Three-manifolds with positive Ricci curvature, J. Diff. Geom. 17 (1982), 255-306. MR 664497 (84a:53050)
  • 9. R. Hamilton, Non-singular solutions of the Ricci flow on three-manifolds, Commun. Anal. Geom. 7 (1999), 695-729. MR 1714939 (2000g:53034)
  • 10. N. J. Hitchin, On compact four-dimensional Einstein manifolds, J. Differential Geom. 9 (1974), 435-442. MR 0350657 (50:3149)
  • 11. M. Ishida, The normalized Ricci flow on four-manifolds and exotic smooth structure, arXiv:math.0807.2169.
  • 12. B. Kleiner and J. Lott, Notes on Perelman's papers, Geom. Topol. 12 (2008), 2587-2855. MR 2460872 (2010h:53098)
  • 13. D. Kotschick, Monopole classes and Perelman's invariant of four-manifolds, arXiv:math. DG/0608504.
  • 14. C. LeBrun, Kodaira dimension and the Yamabe problem, Comm. Anal. Geom. 7 (1999), 133-156. MR 1674105 (99m:58056)
  • 15. G. Perelman, The entropy formula for the Ricci flow and its geometric applications, arXiv:math.DG/0211159.
  • 16. G. Perelman, Ricci flow with surgery on three-manifolds, arXiv:math.DG/0303109.
  • 17. O. S. Rothaus, Logarithmic Sobolev inequalities and the spectrum of Schrödinger operators, J. Funct. Anal. 42 (1981), 110-120. MR 620582 (83f:58080b)
  • 18. J. Song, G. Tian, The Kähler-Ricci flow on surfaces of positive Kodaira dimension, Inventiones Mathematicae 170, no. 3 (2007), 609-653. MR 2357504 (2008m:32044)
  • 19. H. Tsuji, Existence and degeneration of Kähler-Einstein metrics on minimal algebraic varieties of general type, Math. Ann. 281 (1988), 123-133. MR 944606 (89e:53075)
  • 20. G. Tian, Z. Zhang, On the Kähler-Ricci flow on projective manifolds of general type, Chinese Annals of Mathematics B 27 (2006), 179-192. MR 2243679 (2007c:32029)
  • 21. Y. Zhang, Miyaoka-Yau inequality for minimal projective manifolds of general type, Proc. Amer. Math. Soc. 137 (2009), 2749-2754. MR 2497488 (2010b:32036)
  • 22. Z. L. Zhang, Compact blow-up limits of finite time singularities of Ricci flow are shrinking Ricci solitons, C. R. Acad. Sci. Paris, Ser. I 345 (2007), 503-506. MR 2375111 (2009a:53117)
  • 23. Z. Zhang, Scalar curvature bound for Kähler-Ricci flows over minimal manifolds of general type, International Mathematics Research Notices (2009), 3901-3912. MR 2544732 (2010j:32038)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 53C44

Retrieve articles in all journals with MSC (2010): 53C44


Additional Information

Yuguang Zhang
Affiliation: Department of Mathematics, Capital Normal University, Beijing, People’s Republic of China
Email: yuguangzhang76@yahoo.com

Zhenlei Zhang
Affiliation: Department of Mathematics, Capital Normal University, Beijing, People’s Republic of China
Email: zhleigo@yahoo.com.cn

DOI: http://dx.doi.org/10.1090/S0002-9939-2011-11084-0
Received by editor(s): May 26, 2010
Received by editor(s) in revised form: January 23, 2011
Published electronically: September 7, 2011
Additional Notes: The first author was supported by NSFC-10901111 and KM-210100028003
The second author was supported by NSFC-09221010056
Communicated by: Michael Wolf
Article copyright: © Copyright 2011 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.