Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

Request Permissions   Purchase Content 
 

 

On the regularity of the complex Monge-Ampère equations


Author: Weiyong He
Journal: Proc. Amer. Math. Soc. 140 (2012), 1719-1727
MSC (2010): Primary 35J60, 35J96
Published electronically: September 9, 2011
MathSciNet review: 2869156
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We shall consider the regularity of solutions for the complex Monge-Ampère equations in $ \mathbb{C}^n$ or a bounded domain. First we prove interior $ C^2$ estimates of solutions in a bounded domain for the complex Monge-Ampère equations with the assumption of an $ L^p$ bound for $ \triangle u$, $ p>n^2$, and of a Lipschitz condition on the right-hand side. Then we shall construct a family of Pogorelov-type examples for the complex Monge-Ampère equations. These examples give generalized entire solutions (as well as viscosity solutions) of the complex Monge-Ampère equation $ \det(u_{i\bar j})=1$ in $ \mathbb{C}^n$.


References [Enhancements On Off] (What's this?)

  • 1. E. Bedford; B.A. Taylor, The Dirichlet problem for a complex Monge-Ampère equation. Invent. Math. 37 (1976), no. 1, 1-44. MR 0445006 (56:3351)
  • 2. E. Bedford; B.A. Taylor, Variational properties of the complex Monge-Ampère equation. I. Dirichlet principle. Duke Math. J. 45 (1978), no. 2, 375-403. MR 495680 (80a:32011)
  • 3. E. Bedford; B.A. Taylor, Variational properties of the complex Monge-Ampère equation. II. Intrinsic norms. Amer. J. Math. 101 (1979), no. 5, 1131-1166. MR 546307 (80j:32034)
  • 4. Z. Blocki, On the regularity of the complex Monge-Ampère operator, Contemporary Mathematics 222, Complex Geometric Analysis in Pohang, ed. K.-T. Kim, S.G. Krantz, pp. 181-189, Amer. Math. Soc., Providence, RI, 1999. MR 1653050 (99m:32018)
  • 5. Z. Blocki, Interior regularity of the complex Monge-Ampère equation in convex domains, Duke Math. J. 105 (2000), no. 1, 167-181. MR 1788046 (2001i:32060)
  • 6. Z. Blocki, Interior regularity of the degenerate Monge-Ampère equation, Bulletin of the Australian Mathematical Society 68 (2003), 81-92. MR 1996171 (2004g:35075)
  • 7. Z. Blocki; S. Dinew, A local regularity result of the complex Monge-Ampère equation, Math. Ann., DOI 10.1007/S00208-010-0609-0.
  • 8. L. Caffarelli, Interior $ W^{2,p}$ estimates for solutions of the Monge-Ampère equation. Ann. of Math. (2) 131 (1990), no. 1, 135-150. MR 1038360 (91f:35059)
  • 9. L. Caffarelli; J.J. Kohn; L. Nirenberg; J. Spruck, The Dirichlet problem for nonlinear second-order elliptic equations. II. Complex Monge-Ampère, and uniformly elliptic, equations. Comm. Pure Appl. Math. 38 (1985), no. 2, 209-252. MR 780073 (87f:35097)
  • 10. M.G. Crandall; H. Hitoshi; P.L. Lions, User's guide to viscosity solutions of second order partial differential equations. Bull. Amer. Math. Soc. (N.S.) 27 (1992), no. 1, 1-67. MR 1118699 (92j:35050)
  • 11. D. Gilbarg; N. Trudinger, Elliptic partial differential equations of second order, Springer, 1998 edition. MR 1814364 (2001k:35004)
  • 12. B. Guan, The Dirichlet problem for complex Monge-Ampère equations and regularity of the pluri-complex Green function. Comm. Anal. Geom. 6 (1998), no. 4, 687-703. MR 1664889 (2000d:32062)
  • 13. N.M. Ivochikina, Construction of a priori bounds for convex solutions of the Monge-Ampère equation by integral methods, Ukrain. Math. J. 30 (1978), 32-38.
  • 14. D. Riebesehl; F. Schulz, A priori estimates and a Liouville theorem for complex Monge-Ampère equations. Math. Z. 186 (1984), no. 1, 57-66. MR 735051 (85e:32022)
  • 15. F. Schulz, A $ C^2$ estimate for solutions of complex Monge-Ampère equations, J. Reine Angew. Math. 348 (1984), 88-93. MR 733924 (85h:32028)
  • 16. Y. T. Siu, Lectures on Hermitian-Einstein metrics for stable bundles and Kähler-Einstein metrics, DMV Seminar, 8. Birkhäuser Verlag, Basel, 1987. MR 904673 (89d:32020)
  • 17. J. Urbas, Regularity of generalized solutions of Monge-Ampère equations. Math. Z. 197 (1988), no. 3, 365-393. MR 926846 (89b:35046)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 35J60, 35J96

Retrieve articles in all journals with MSC (2010): 35J60, 35J96


Additional Information

Weiyong He
Affiliation: Department of Mathematics, University of Oregon, Eugene, Oregon 97403
Email: whe@uoregon.edu

DOI: http://dx.doi.org/10.1090/S0002-9939-2011-11178-X
Keywords: The complex Monge-Ampère equation, regularity
Received by editor(s): June 7, 2010
Received by editor(s) in revised form: January 25, 2011
Published electronically: September 9, 2011
Additional Notes: The author is partially supported by an NSF grant.
Communicated by: Chuu-Lian Terng
Article copyright: © Copyright 2011 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.