On the Fourier coefficients of 2-dimensional vector-valued modular forms

Author:
Geoffrey Mason

Journal:
Proc. Amer. Math. Soc. **140** (2012), 1921-1930

MSC (2010):
Primary 11F99

Published electronically:
October 5, 2011

MathSciNet review:
2888179

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let be an irreducible representation of the modular group such that has finite order . We study holomorphic vector-valued modular forms of integral weight associated to which have *rational* Fourier coefficients. (These span the complex space of all integral weight vector-valued modular forms associated to .) As a special case of the main theorem, we prove that if does *not* divide , then every nonzero has Fourier coefficients with *unbounded denominators*.

**[AS]**A. O. L. Atkin and H. P. F. Swinnerton-Dyer,*Modular forms on noncongruence subgroups*, Combinatorics (Proc. Sympos. Pure Math., Vol. XIX, Univ. California, Los Angeles, Calif., 1968) Amer. Math. Soc., Providence, R.I., 1971, pp. 1–25. MR**0337781****[H]**Einar Hille,*Ordinary differential equations in the complex domain*, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1976. Pure and Applied Mathematics. MR**0499382****[KM]**Marvin Knopp and Geoffrey Mason,*On vector-valued modular forms and their Fourier coefficients*, Acta Arith.**110**(2003), no. 2, 117–124. MR**2008079**, 10.4064/aa110-2-2**[KoM1]**Winfried Kohnen and Geoffrey Mason,*On generalized modular forms and their applications*, Nagoya Math. J.**192**(2008), 119–136. MR**2477614****[KoM2]**Kohnen, W., and Mason, G., On the canonical decomposition of a generalized modular form, to appear in Proc. Amer. Math. Soc. (arXiv:1003.2407).**[KL1]**Chris A. Kurth and Ling Long,*On modular forms for some noncongruence subgroups of 𝑆𝐿₂(ℤ)*, J. Number Theory**128**(2008), no. 7, 1989–2009. MR**2423745**, 10.1016/j.jnt.2007.10.007**[KL2]**Chris Kurth and Ling Long,*On modular forms for some noncongruence subgroups of 𝑆𝐿₂(ℤ). II*, Bull. Lond. Math. Soc.**41**(2009), no. 4, 589–598. MR**2521354**, 10.1112/blms/bdp061**[MM]**Christopher Marks and Geoffrey Mason,*Structure of the module of vector-valued modular forms*, J. Lond. Math. Soc. (2)**82**(2010), no. 1, 32–48. MR**2669639**, 10.1112/jlms/jdq020**[M1]**Geoffrey Mason,*Vector-valued modular forms and linear differential operators*, Int. J. Number Theory**3**(2007), no. 3, 377–390. MR**2352826**, 10.1142/S1793042107000973**[M2]**Geoffrey Mason,*2-dimensional vector-valued modular forms*, Ramanujan J.**17**(2008), no. 3, 405–427. MR**2456842**, 10.1007/s11139-007-9054-4**[S]**Schur, I., Über die Darstellung der endlichen Gruppen durch gebrochene lineare Substitutionen, J. für die Reine und Ang. Math.**127**(1904), 20-50.**[W]**Klaus Wohlfahrt,*An extension of F. Klein’s level concept*, Illinois J. Math.**8**(1964), 529–535. MR**0167533**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2010):
11F99

Retrieve articles in all journals with MSC (2010): 11F99

Additional Information

**Geoffrey Mason**

Affiliation:
Department of Mathematics, University of California, Santa Cruz, Santa Cruz, California 95064

Email:
gem@cats.ucsc.edu

DOI:
http://dx.doi.org/10.1090/S0002-9939-2011-11098-0

Received by editor(s):
September 3, 2010

Received by editor(s) in revised form:
February 8, 2011

Published electronically:
October 5, 2011

Additional Notes:
Supported by NSA and NSF

Communicated by:
Kathrin Bringmann

Article copyright:
© Copyright 2011
American Mathematical Society