Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



On isomorphism problems for vertex operator algebras associated with even lattices

Author: Hiroki Shimakura
Journal: Proc. Amer. Math. Soc. 140 (2012), 3333-3348
MSC (2010): Primary 17B69; Secondary 11H06, 11H71
Published electronically: October 6, 2011
MathSciNet review: 2929004
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this article, we completely determine the isomorphism classes of lattice vertex operator algebras and the vertex operator subalgebras fixed by a lift of the $ -1$-isometry of the lattice. We also provide similar results for certain even lattices associated with doubly-even binary codes.

References [Enhancements On Off] (What's this?)

  • [Ab01] T. Abe, Fusion rules for the charge conjugation orbifold, J. Algebra 242 (2001), 624-655. MR 1848962 (2002f:17044)
  • [AD04] T. Abe and C. Dong, Classification of irreducible modules for the vertex operator algebra $ V\sp +\sb L$: general case. J. Algebra 273 (2004), 657-685. MR 2037717 (2005c:17040)
  • [ADL05] T. Abe, C. Dong, and H. Li, Fusion rules for the vertex operator algebra $ M(1)$ and $ V\sp +\sb L$, Comm. Math. Phys. 253 (2005), 171-219. MR 2105641 (2005i:17033)
  • [Bo86] R.E. Borcherds, Vertex algebras, Kac-Moody algebras, and the Monster, Proc. Nat'l. Acad. Sci. U.S.A. 83 (1986), 3068-3071. MR 843307 (87m:17033)
  • [CS99] J.H. Conway and N.J.A. Sloane, Sphere packings, lattices and groups, 3rd Edition, Springer, New York, 1999. MR 1662447 (2000b:11077)
  • [Do93] C. Dong, Vertex algebras associated with even lattices, J. Algebra 161 (1993), 245-265. MR 1245855 (94j:17023)
  • [DGH98] C. Dong, R.L. Griess, and G. H $ \ddot {\rm o}$hn, Framed vertex operator algebras, codes and Moonshine module, Comm. Math. Phys. 193 (1998), 407-448. MR 1618135 (99g:17050)
  • [DM04] C. Dong and G. Mason, Rational vertex operator algebras and the effective central charge, Int. Math. Res. Not. (2004), no. 56, 2989-3008. MR 2097833 (2005k:17034)
  • [DM04b] C. Dong and G. Mason, Holomorphic vertex operator algebras of small central charge, Pacific J. Math. 213 (2004), 253-266. MR 2036919 (2005c:17044)
  • [DN99] C. Dong and K. Nagatomo, Representations of vertex operator algebra $ V_L^+$ for rank one lattice $ L$, Comm. Math. Phys. 202 (1999), 169-195. MR 1686535 (2000b:17037)
  • [Eb02] W. Ebeling, Lattices and codes, Second revised edition, Advanced Lectures in Mathematics, Friedr. Vieweg & Sohn, Braunschweig, 2002. MR 1938666 (2003i:11093)
  • [FHL93] I. Frenkel, Y. Huang and J. Lepowsky, On axiomatic approaches to vertex operator algebras and modules, Mem. Amer. Math. Soc. 104 (1993). MR 1142494 (94a:17007)
  • [FLM88] I. Frenkel, J. Lepowsky and A. Meurman, Vertex operator algebras and the Monster, Pure and Appl. Math., Vol. 134, Academic Press, Boston, 1988. MR 996026 (90h:17026)
  • [Hö95] G. Höhn, Selbstduale Vertexoperatorsuperalgebren und das Babymonster, dissertation, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, 1995.
  • [Hö03a] G. Höhn, Self-dual codes over the Kleinian four group, Math. Ann. 327 (2003), 227-255. MR 2015068 (2004i:94063)
  • [Hö03b] G. Höhn, Genera of vertex operator algebras and three-dimensional topological quantum field theories, Fields Inst. Commun. 39 (2003), 89-107. MR 2029792 (2005m:11077)
  • [Hö08] G. Höhn, Conformal designs based on vertex operator algebras, Adv. Math. 217 (2008), 2301-2335. MR 2388095 (2009e:17055)
  • [KKM91] M. Kitazume, T. Kondo and I. Miyamoto, Even lattices and doubly-even codes,
    J. Math. Soc. Japan 43 (1991), 67-87. MR 1082423 (92b:11041)
  • [Sh04] H. Shimakura, The automorphism group of the vertex operator algebra $ V_L^+$ for an even lattice $ L$ without roots, J. Algebra 280 (2004), 29-57. MR 2081920 (2005d:17038)
  • [Sh06] H. Shimakura, The automorphism groups of the vertex operator algebras $ V_L^+$: general case, Math. Z. 252 (2006), 849-862. MR 2206630 (2007d:17040)
  • [Sh07] H. Shimakura, Lifts of automorphisms of vertex operator algebras in simple current extensions, Math. Z. 256 (2007), 491-508. MR 2299567 (2008f:17044)
  • [Sh11] H. Shimakura, An $ E_8$-approach to the moonshine vertex operator algebra, J. London Math. Soc. 83 (2011), 493-516.
  • [Ve79] B.B. Venkov, Odd unimodular lattices, algebraic numbers and finite groups, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov 86 (1979), 40-48. MR 535479 (81a:10043)
  • [Wi41] E. Witt, Eine Identität zwischen Modulformen zweiten Grades, Abh. Math. Sem. Hansischen Univ. 14 (1941), 323-337. MR 0005508 (3:163d)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 17B69, 11H06, 11H71

Retrieve articles in all journals with MSC (2010): 17B69, 11H06, 11H71

Additional Information

Hiroki Shimakura
Affiliation: Department of Mathematics, Aichi University of Education, 1 Hirosawa, Igaya-cho, Kariya-city, Aichi 448-8542, Japan

Received by editor(s): October 25, 2009
Received by editor(s) in revised form: May 4, 2010, January 18, 2011, and April 4, 2011
Published electronically: October 6, 2011
Additional Notes: The author was partially supported by Grants-in-Aid for Scientific Research (No. 20549004) and Excellent Young Researcher Overseas Visit Program, JSPS
Communicated by: Gail R. Letzter
Article copyright: © Copyright 2011 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society