Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On the parity of the number of multiplicative partitions and related problems


Author: Paul Pollack
Journal: Proc. Amer. Math. Soc. 140 (2012), 3793-3803
MSC (2010): Primary 11N64; Secondary 11P83, 11B73
DOI: https://doi.org/10.1090/S0002-9939-2012-11254-7
Published electronically: March 15, 2012
MathSciNet review: 2944720
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ f(N)$ be the number of unordered factorizations of $ N$, where a factorization is a way of writing $ N$ as a product of integers all larger than $ 1$. For example, the factorizations of $ 30$ are

$\displaystyle 2\cdot 3\cdot 5,\quad 5\cdot 6, \quad 3\cdot 10, \quad 2 \cdot 15,\quad 30, $

so that $ f(30)=5$. The function $ f(N)$, as a multiplicative analogue of the (additive) partition function $ p(N)$, was first proposed by MacMahon, and its study was pursued by Oppenheim, Szekeres and Turán, and others.

Recently, Zaharescu and Zaki showed that $ f(N)$ is even a positive proportion of the time and odd a positive proportion of the time. Here we show that for any arithmetic progression $ a\operatorname {mod} m$, the set of $ N$ for which

$\displaystyle f(N) \equiv a( \operatorname {mod} m) $

possesses an asymptotic density. Moreover, the density is positive as long as there is at least one such $ N$. For the case investigated by Zaharescu and Zaki, we show that $ f$ is odd more than 50 percent of the time (in fact, about 57 percent).

References [Enhancements On Off] (What's this?)

  • 1. S. Ahlgren and M. Boylan, Coefficients of half-integral weight modular forms modulo $ \ell ^j$, Math. Ann. 331 (2005), no. 1, 219-239. MR 2107445 (2005k:11091)
  • 2. S. Ahlgren and K. Ono, Congruences and conjectures for the partition function, $ q$-series with applications to combinatorics, number theory, and physics (Urbana, IL, 2000), Contemp. Math., vol. 291, Amer. Math. Soc., Providence, RI, 2001, pp. 1-10. MR 1874518 (2002j:11120)
  • 3. R. Balasubramanian and F. Luca, On the number of factorizations of an integer, Integers 11 (2011), article A12, 5 pp. MR 2798647
  • 4. N. Calkin, J. Davis, K. James, E. Perez, and C. Swannack, Computing the integer partition function, Math. Comp. 76 (2007), no. 259, 1619-1638. MR 2299791 (2007m:05022)
  • 5. E. R. Canfield, P. Erdős, and C. Pomerance, On a problem of Oppenheim concerning ``factorisatio numerorum'', J. Number Theory 17 (1983), no. 1, 1-28. MR 712964 (85j:11012)
  • 6. L. Comtet, Advanced combinatorics, enlarged ed., D. Reidel Publishing Co., Dordrecht, 1974. MR 0460128 (57:124)
  • 7. M. Coons and S. R. Dahmen, On the residue class distribution of the number of prime divisors of an integer, Nagoya Math. J. 202 (2011), 15-22. MR 2804543
  • 8. M. Deléglise, M. O. Hernane, and J.-L. Nicolas, Grandes valeurs et nombres champions de la fonction arithmétique de Kalmár, J. Number Theory 128 (2008), no. 6, 1676-1716. MR 2419188 (2009d:11137)
  • 9. G. Halász, On the distribution of additive and the mean values of multiplicative arithmetic functions, Studia Sci. Math. Hungar. 6 (1971), 211-233. MR 0319930 (47:8471)
  • 10. R. R. Hall, A sharp inequality of Halász type for the mean value of a multiplicative arithmetic function, Mathematika 42 (1995), no. 1, 144-157. MR 1346679 (97a:11152)
  • 11. G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, sixth ed., Oxford University Press, Oxford, 2008. MR 2445243 (2009i:11001)
  • 12. L. Kalmár, A ``factorisatio numerorum'' problémájáról, Mat. Fiz. Lapok 38 (1931), 1-15.
  • 13. -, Über die mittlere Anzahl der Produktdarstellungen der Zahlen (Erste Mitteilung), Acta Litt. Sci. Szeged 5 (1931), 95-107.
  • 14. M. Klazar and F. Luca, On the maximal order of numbers in the ``factorisatio numerorum'' problem, J. Number Theory 124 (2007), no. 2, 470-490. MR 2321375 (2008e:11120)
  • 15. E. Landau, Handbuch der Lehre von der Verteilung der Primzahlen. 2 Bände, second ed., Chelsea Publishing Co., 1953. MR 0068565 (16:904d)
  • 16. F. Luca, A. Mukhopadhyay, and K. Srinivas, Some results on Oppenheim's ``factorisatio numerorum'' function, Acta Arith. 142 (2010), no. 1, 41-50. MR 2601047 (2011b:11135)
  • 17. W. F. Lunnon, P. A. B. Pleasants, and N. M. Stephens, Arithmetic properties of Bell numbers to a composite modulus. I, Acta Arith. 35 (1979), no. 1, 1-16. MR 536875 (80k:05006)
  • 18. P. A. MacMahon, Memoir on the theory of the compositions of numbers, Philos. Trans. Roy. Soc. London 184 (1893), 835-901.
  • 19. -, Dirichlet series and the theory of partitions, Proc. London Math. Soc. 22 (1923), 404-411.
  • 20. A. Mazouz, Analyse $ p$-adique et nombres de Bell à deux variables, Bull. Belg. Math. Soc. Simon Stevin 3 (1996), no. 4, 377-390. MR 1418935 (97i:11016)
  • 21. M. Newman, Periodicity modulo $ m$ and divisibility properties of the partition function, Trans. Amer. Math. Soc. 97 (1960), 225-236. MR 0115981 (22:6778)
  • 22. J.-L. Nicolas, Parité des valeurs de la fonction de partition $ p(n)$ et anatomie des entiers, Anatomy of integers, CRM Proc. Lecture Notes, vol. 46, Amer. Math. Soc., Providence, RI, 2008, pp. 97-113. MR 2437968 (2009j:11169)
  • 23. A. Oppenheim, On an arithmetic function, J. London Math. Soc. 1 (1926), 205-211, part II in 2 (1927), 123-130.
  • 24. T. R. Parkin and D. Shanks, On the distribution of parity in the partition function, Math. Comp. 21 (1967), 466-480. MR 0227126 (37:2711)
  • 25. C. Radoux, Arithmétique des nombres de Bell et analyse $ p$-adique, Bull. Soc. Math. Belg. 29 (1977), no. 1, 13-28. MR 0485676 (58:5499)
  • 26. G. J. Rieger, Sur les nombres de Cullen, Séminaire de Théorie des Nombres (1976-1977), CNRS, Talence, 1977, Exp. No. 16, 9 pp. MR 509629 (81d:10006)
  • 27. W. Sierpiński, Elementary theory of numbers, second ed., North-Holland Mathematical Library, vol. 31, North-Holland Publishing Co., Amsterdam, 1988. MR 930670 (89f:11003)
  • 28. G. Szekeres and P. Turán, Über das zweite Hauptproblem der ``Factorisatio Numerorum'', Acta Litt. Sci. Szeged 6 (1933), 143-154.
  • 29. G. T. Williams, Numbers generated by the function $ e^{e^{x}-1}$, Amer. Math. Monthly 52 (1945), 323-327. MR 0012612 (7:47e)
  • 30. A. Zaharescu and M. Zaki, On the parity of the number of multiplicative partitions, Acta Arith. 145 (2010), no. 3, 221-232. MR 2733086

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 11N64, 11P83, 11B73

Retrieve articles in all journals with MSC (2010): 11N64, 11P83, 11B73


Additional Information

Paul Pollack
Affiliation: Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
Address at time of publication: Department of Mathematics, University of British Columbia, 1984 Mathematics Road, Vancouver, BC, Canada V6T 1Z2
Email: pppollac@illinois.edu, twonth@gmail.com

DOI: https://doi.org/10.1090/S0002-9939-2012-11254-7
Received by editor(s): May 4, 2011
Published electronically: March 15, 2012
Additional Notes: The author is supported by NSF award DMS-0802970.
Communicated by: Ken Ono
Article copyright: © Copyright 2012 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society