Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Recurrence coefficients of generalized Charlier polynomials and the fifth Painlevé equation


Authors: Galina Filipuk and Walter Van Assche
Journal: Proc. Amer. Math. Soc. 141 (2013), 551-562
MSC (2010): Primary 34M55, 33E17; Secondary 33C47, 42C05, 65Q30
DOI: https://doi.org/10.1090/S0002-9939-2012-11468-6
Published electronically: June 11, 2012
MathSciNet review: 2996960
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We investigate generalizations of the Charlier polynomials on
the lattice $ \mathbb{N}$, on the shifted lattice $ \mathbb{N}+1-\beta $, and on the bi-lattice $ \mathbb{N}\;\cup $
$ (\mathbb{N}+1-\beta )$. We show that the coefficients of the three-term recurrence relation for the orthogonal polynomials are related to solutions of the fifth Painlevé equation P $ _{\textup V}$ (which can be transformed to the third Painlevé equation). Initial conditions for different lattices can be transformed to the classical solutions of P $ _{\textup V}$ with special values of the parameters.


References [Enhancements On Off] (What's this?)

  • 1. M. Abramowitz and I. Stegun, Handbook of Mathematical Functions, Dover Publications, New York, 1992. MR 1225604 (94b:00012)
  • 2. V.E. Adler, Nonlinear chains and Painlevé equations, Physica D 73 (1994), 335-351. MR 1280883 (95c:58157)
  • 3. L. Boelen, G. Filipuk and W. Van Assche, Recurrence coefficients of generalized Meixner polynomials and Painlevé equations, J. Phys. A: Math. Theor. 44 (2011), 035202 (19 pp). MR 2749070 (2011j:33036)
  • 4. T. S. Chihara, An Introduction to Orthogonal Polynomials, Gordon and Breach, New York, 1978. MR 0481884 (58:1979)
  • 5. G. Filipuk, W. Van Assche, and L. Zhang The recurrence coefficients of semi-classical Laguerre polynomials and the fourth Painlevé equation, arXiv:1105.5229v1 [math.CA]
  • 6. G. Filipuk and W. Van Assche, Recurrence coefficients of a new generalization of the Meixner polynomials, SIGMA Symmetry Integrability Geom. Methods Appl.7 (2011), 068, 11 pages.
  • 7. A.S. Fokas and M.J. Ablowitz, On a unified approach to transformations and elementary solutions of Painlevé equations, J. Math. Phys. 23 (1982), 2033-2042. MR 679998 (84b:34004)
  • 8. V.I. Gromak, I. Laine and S. Shimomura, Painlevé Differential Equations in the Complex Plane, Vol. 28, Studies in Mathematics, de Gruyter, Berlin, New York, 2002. MR 1960811 (2003m:34210)
  • 9. M.N. Hounkonnou, C. Hounga, and A. Ronveaux, Discrete semi-classical orthogonal polynomials: generalized Charlier, J. Comput. Appl. Math. 114 (2000), 361-366. MR 1737084 (2001m:33010)
  • 10. M.E.H. Ismail, Classical and Quantum Orthogonal Polynomials in One Variable, Encyclopedia of Mathematics and its Applications 98, Cambridge University Press, 2005. MR 2191786 (2007f:33001)
  • 11. J. Moser, Finitely many mass points on the line under the influence of an exponential potential -- an integrable system, Dynamical Systems, Theory and Applications. Lecture Notes in Physics 38, Springer, Berlin, 1975, pp. 467-497. MR 0455038 (56:13279)
  • 12. M. Noumi, Painlevé equations through symmetry, Translations of Mathematical Monographs, 223, American Mathematical Society, Providence, RI, 2004. MR 2044201 (2005b:34183)
  • 13. F.W.J. Olver, D.W. Lozier, R.F. Boisvert, and C.W. Clark, NIST Handbook of Mathematical Functions, NIST and Cambridge University Press, 2010. MR 2723248 (2012a:33001)
  • 14. C. Smet and W. Van Assche, Orthogonal polynomials on a bi-lattice, Constr. Approx., DOI:10.1007/S00365-011-9145-8, arXiv:1101.1817v1 [math.CA]
  • 15. T. Tokihiro, B. Grammaticos, and A. Ramani, From the continuous P $ _{\textup V}$ to discrete Painlevé equations, J. Phys.A: Math. Gen. 35 (2002), 5943-5950. MR 1930545 (2003j:39049)
  • 16. V.V. Tsegelnik, The Painlevé type equations: analytical properties of solutions and their applications, Habilitation thesis, Minsk, 2001 (in Russian).
  • 17. W. Van Assche and M. Foupouagnigni, Analysis of non-linear recurrence relations for the recurrence coefficients of generalized Charlier polynomials, J. Nonlinear Math. Phys.10 (2003), suppl. 2, 231-237. MR 2063533 (2005f:33020)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 34M55, 33E17, 33C47, 42C05, 65Q30

Retrieve articles in all journals with MSC (2010): 34M55, 33E17, 33C47, 42C05, 65Q30


Additional Information

Galina Filipuk
Affiliation: Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Banacha 2, Warsaw 02-097, Poland
Email: filipuk@mimuw.edu.pl

Walter Van Assche
Affiliation: Department of Mathematics, KU Leuven, Celestijnenlaan 200B, Box 2400, BE-3001 Leuven, Belgium
Email: Walter.VanAssche@wis.kuleuven.be

DOI: https://doi.org/10.1090/S0002-9939-2012-11468-6
Keywords: Orthogonal polynomials, recurrence coefficients, Painlevé equations, Bäcklund transformations, classical solutions
Received by editor(s): June 15, 2011
Received by editor(s) in revised form: June 30, 2011
Published electronically: June 11, 2012
Additional Notes: The first author is partially supported by Polish MNiSzW Grant N N201 397937.
The second author was supported by the Belgian Interuniversity Attraction Pole P6/02, FWO Grant G.0427.09 and KU Leuven Research Grant OT/08/033.
Communicated by: Sergei K. Suslov
Article copyright: © Copyright 2012 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society