Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

Request Permissions   Purchase Content 
 
 

 

Strong algebrability of sets of sequences and functions


Authors: Artur Bartoszewicz and Szymon Głab
Journal: Proc. Amer. Math. Soc. 141 (2013), 827-835
MSC (2010): Primary 15A03; Secondary 28A20, 46J10
DOI: https://doi.org/10.1090/S0002-9939-2012-11377-2
Published electronically: July 20, 2012
MathSciNet review: 3003676
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We introduce a notion of strong algebrability of subsets of linear algebras. Our main results are the following. The set of all sequences from $ c_0$ which are not summable with any power is densely strongly $ \mathfrak{c}$-algebrable. The set of all sequences in $ l^\infty $ whose sets of limit points are homeomorphic to the Cantor set is comeager and strongly $ \mathfrak{c}$-algebrable. The set of all non-measurable functions from $ \mathbb{R}^{\mathbb{R}}$ is $ 2^\mathfrak{c}$-algebrable. These results complete several by other authors, within the modern context of lineability.


References [Enhancements On Off] (What's this?)

  • [1] A. Aizpuru, C. Pérez-Eslava and J. B. Seoane-Sepúlveda, Linear structure of sets of divergent sequences and series, Linear Algebra Appl. 418 (2006), no. 2-3, 595-598. MR 2260214 (2008h:40001)
  • [2] R. M. Aron, J. A. Conejero, A. Peris and J. B. Seoane-Sepúlveda, Uncountably generated algebras of everywhere surjective functions, Bull. Belg. Math. Soc. Simon Stevin 17 (2010), 571-575. MR 2731374 (2011g:46041)
  • [3] R. Aron, V. I. Gurariy and J. B. Seoane-Sepúlveda, Lineability and spaceability of sets of functions on $ \mathbb{R}$, Proc. Amer. Math. Soc. 133 (2005), no. 3, 795-803. MR 2113929 (2006i:26004)
  • [4] R. M. Aron, D. Pérez-García and J. B. Seoane-Sepúlveda, Algebrability of the set of non-convergent Fourier series, Studia Math. 175 (2006), no. 1, 83-90. MR 2261701 (2007k:42007)
  • [5] R. M. Aron and J. B. Seoane-Sepúlveda, Algebrability of the set of everywhere surjective functions on $ \mathbb{C}$, Bull. Belg. Math. Soc. Simon Stevin 14 (2007), no. 1, 25-31. MR 2327324 (2008d:26016)
  • [6] B. Balcar and F. Franěk, Independent families in complete Boolean algebras, Trans. Amer. Math. Soc. 274 (1982), no. 2, 607-618. MR 675069 (83m:06020)
  • [7] A. Bartoszewicz, S. Głab and T. Poreda, On algebrability of nonabsolutely convergent series, Linear Algebra Appl. 435 (2011), no. 5, 1025-1028. MR 2807216
  • [8] F. Bayart, Topological and algebraic genericity of divergence and universality, Studia. Math. 167 (2005), 161-181. MR 2134382 (2006b:46024)
  • [9] L. Bernal-González, Dense-lineability in spaces of continuous functions, Proc. Amer. Math. Soc. 136 (2008), 3163-3169. MR 2407080 (2009c:46038)
  • [10] G. Botelho, D. Diniz, V. V. Favaro and D. Pellegrino, Spaceability in Banach and quasi-Banach sequence spaces, Linear Algebra Appl. 434 (2011), 1255-1260. MR 2763584
  • [11] F. J. García-Pacheco, M. Martín and J. B. Seoane-Sepúlveda, Lineability, spaceability, and algebrability of certain subsets of function spaces, Taiwanese J. Math. 13 (2009), no. 4, 1257-1269. MR 2543741 (2010h:46072)
  • [12] F. J. García-Pacheco, N. Palmberg and J. B. Seoane-Sepúlveda, Lineability and algebrability of pathological phenomena in analysis, J. Math. Anal. Appl. 326 (2007), no. 2, 929-939. MR 2280953 (2007i:26003)
  • [13] F. J. García-Pacheco and J. B. Seoane-Sepúlveda, Vector spaces of non-measurable functions, Acta Math. Sin. (Engl. Ser.) 22 (2006), no. 6, 1805-1808. MR 2262440 (2007i:28006)
  • [14] V. I. Gurariy and L. Quarta, On lineability of sets of continuous functions, J. Math. Anal. Appl. 294 (2004), no. 1, 62-72. MR 2059788 (2005c:46026)
  • [15] A. S. Kechris, Classical descriptive set theory, Graduate Texts in Mathematics, 156. Springer-Verlag, New York, 1995. MR 1321597 (96e:03057)
  • [16] J.C. Oxtoby, Measure and Category, Springer-Verlag, New York, 1980. MR 584443 (81j:28003)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 15A03, 28A20, 46J10

Retrieve articles in all journals with MSC (2010): 15A03, 28A20, 46J10


Additional Information

Artur Bartoszewicz
Affiliation: Institute of Mathematics, Technical University of Łódź, Wólczańska 215, 93-005 Łódź, Poland
Email: arturbar@p.lodz.pl

Szymon Głab
Affiliation: Institute of Mathematics, Technical University of Łódź, Wólczańska 215, 93-005 Łódź, Poland
Email: szymon.glab@p.lodz.pl

DOI: https://doi.org/10.1090/S0002-9939-2012-11377-2
Keywords: Algebrability, non-summable sequences, non-measurable functions, Banach-Mazur game, accumulation points, Cantor sets
Received by editor(s): May 24, 2011
Received by editor(s) in revised form: July 19, 2011, and July 23, 2011
Published electronically: July 20, 2012
Communicated by: Thomas Schlumprecht
Article copyright: © Copyright 2012 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society