Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

   
Remote Access
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

   

 

On the approximate controllability of Stackelberg-Nash strategies for Stokes equations


Authors: F. Guillén-González, F. Marques-Lopes and M. Rojas-Medar
Journal: Proc. Amer. Math. Soc. 141 (2013), 1759-1773
MSC (2010): Primary 76D55, 35Q30; Secondary 76D05, 93C20
Published electronically: December 7, 2012
MathSciNet review: 3020861
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study a Stackelberg strategy subject to the evolutionary Stokes equations, considering a Nash multi-objective equilibrium (not necessarily cooperative) for the ``follower players'' (as they are called in the economy field) and an optimal problem for the leader player with approximate controllability objective.

We will obtain the following three main results: the existence and uniqueness of the Nash equilibrium and its characterization, the approximate controllability of the Stokes system with respect to the leader control and the associate Nash equilibrium, and the existence and uniqueness of the Stackelberg-Nash problem and its characterization.


References [Enhancements On Off] (What's this?)

  • 1. Dautray, R., Díaz, J. I., Agir Pour Conserver L$ '$environnement?: Réflexions Générales et Analyse Mathématique de Deux Problèmes Concrets, Notes from the XIth Jacques-Louis Lions Hispano-French School on Numerical Simulation in Physics and Engineering (Spanish), 77-118, Grupo Anal. Teor. Numer. Modelos Cienc. Exp. Univ. Cádiz, Cádiz, 2004.
  • 2. J. I. Díaz and J. L. Lions, On the approximate controllability of Stackelberg-Nash strategies, Ocean circulation and pollution control—a mathematical and numerical investigation (Madrid, 1997) Springer, Berlin, 2004, pp. 17–27. MR 2026005
  • 3. J. I. Díaz, On the von Neumann problem and the approximate controllability of Stackelberg-Nash strategies for some environmental problems, RACSAM. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 96 (2002), no. 3, 343–356 (English, with English and Spanish summaries). Mathematics and environment (Spanish) (Paris, 2002). MR 1985740 (2004e:93011)
  • 4. J. I. Díaz and A. M. Ramos, Positive and negative approximate controllability results for semilinear parabolic equations, Rev. Real Acad. Cienc. Exact. Fís. Natur. Madrid 89 (1995), no. 1-2, 11–30 (English, with English and Spanish summaries). MR 1454346 (98e:93007)
  • 5. Ivar Ekeland and Roger Temam, Analyse convexe et problèmes variationnels, Dunod; Gauthier-Villars, Paris-Brussels-Montreal, Que., 1974 (French). Collection Études Mathématiques. MR 0463993 (57 #3931a)
  • 6. E. Fernández-Cara, S. Guerrero, O. Yu. Imanuvilov, and J.-P. Puel, Local exact controllability of the Navier-Stokes system, J. Math. Pures Appl. (9) 83 (2004), no. 12, 1501–1542 (English, with English and French summaries). MR 2103189 (2005g:93013), 10.1016/j.matpur.2004.02.010
  • 7. Gayte, I., Guillén-González, F., Marques-Lopes, F. P., Rojas-Medar, M. A., Optimal Control and PDE, Workshop sobre ``Avances recientes en el análisis y control de ecuaciones diferenciales no lineales''. Anal. Control Ec. Dif. No Lin., 1 (2004), 125-141.
  • 8. A. M. Ramos, R. Glowinski, and J. Periaux, Nash equilibria for the multiobjective control of linear partial differential equations, J. Optim. Theory Appl. 112 (2002), no. 3, 457–498. MR 1892232 (2003e:49041), 10.1023/A:1017981514093
  • 9. A. M. Ramos, R. Glowinski, and J. Periaux, Pointwise control of the Burgers equation and related Nash equilibrium problems: computational approach, J. Optim. Theory Appl. 112 (2002), no. 3, 499–516. MR 1892233 (2003e:93043), 10.1023/A:1017907930931
  • 10. Jacques-Louis Lions, Contrôle de Pareto de systèmes distribués. Le cas stationnaire, C. R. Acad. Sci. Paris Sér. I Math. 302 (1986), no. 6, 223–227 (French, with English summary). MR 832049 (87d:93043)
  • 11. Jacques-Louis Lions, Contrôle de Pareto de systèmes distribués. Le cas d’évolution, C. R. Acad. Sci. Paris Sér. I Math. 302 (1986), no. 11, 413–417 (French, with English summary). MR 838591 (87e:49011)
  • 12. J.-L. Lions, Some remarks on Stackelberg’s optimization, Math. Models Methods Appl. Sci. 4 (1994), no. 4, 477–487. MR 1291134 (96c:93133), 10.1142/S0218202594000273
  • 13. John Nash, Non-cooperative games, Ann. of Math. (2) 54 (1951), 286–295. MR 0043432 (13,261g)
  • 14. Pareto, V., Cours d'économie politique, Rouge, Laussane, Switzerland, 1896.
  • 15. R. Tyrrell Rockafellar, Duality and stability in extremum problems involving convex functions, Pacific J. Math. 21 (1967), 167–187. MR 0211759 (35 #2636)
  • 16. Von Stackelberg, H., Marktform und Gleichgewicht, Springer, Berlin, Germany, 1934.
  • 17. Roger Temam, Navier-Stokes equations, 3rd ed., Studies in Mathematics and its Applications, vol. 2, North-Holland Publishing Co., Amsterdam, 1984. Theory and numerical analysis; With an appendix by F. Thomasset. MR 769654 (86m:76003)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 76D55, 35Q30, 76D05, 93C20

Retrieve articles in all journals with MSC (2010): 76D55, 35Q30, 76D05, 93C20


Additional Information

F. Guillén-González
Affiliation: Departamento de Ecuaciones Diferenciales y Análisis Numérico, Universidad de Sevilla, Aptdo. 1160, 41080 Sevilla, Spain
Email: guillen@us.es

F. Marques-Lopes
Affiliation: Departamento de Matemática, UFPA, CP 479, 66075-110, Belém-PA, Brazil
Email: fpmlopes@ufpa.br

M. Rojas-Medar
Affiliation: GMA-Departamento de Ciencias Básicas, Universidad del Bío-Bío, Facultad de Ciencias, Campus Fernando May, Casilla 447, Chillán, Chile
Email: marko@ueubiobio.cl

DOI: http://dx.doi.org/10.1090/S0002-9939-2012-11459-5
Keywords: Stokes equations, approximate controllability, multi-objective optimization, Stackelberg-Nash strategies
Received by editor(s): September 14, 2009
Received by editor(s) in revised form: September 15, 2011
Published electronically: December 7, 2012
Additional Notes: The first author was supported in part by the DGI-MEC Grant MTM2006–07932 (Spain), Junta de Andalucía project P06-FQM-02373 (Spain) and Fondecyt-Chile, Grant 1080628.
The third author was supported in part by the DGI-MEC Grant MTM2006–07932 (Spain) and Fondecyt-Chile, Grant 1080628.
Communicated by: Walter Craig
Article copyright: © Copyright 2012 American Mathematical Society



Comments: Email Webmaster

© Copyright , American Mathematical Society
Contact Us · Sitemap · Privacy Statement

Connect with us Facebook Twitter Google+ LinkedIn Instagram RSS feeds Blogs YouTube Podcasts Wikipedia