Asymptotic behavior of dimensions of syzygies
Authors:
Kristen A. Beck and Micah J. Leamer
Journal:
Proc. Amer. Math. Soc. 141 (2013), 22452252
MSC (2010):
Primary 13C15, 13D02, 13E05; Secondary 13D45
Published electronically:
March 8, 2013
MathSciNet review:
3043006
Fulltext PDF
Abstract 
References 
Similar Articles 
Additional Information
Abstract: Let be a commutative noetherian local ring and be a finitely generated module of infinite projective dimension. It is wellknown that the depths of the syzygy modules of eventually stabilize to the depth of . In this paper, we investigate the conditions under which a similar statement can be made regarding dimension. In particular, we show that if is equidimensional and the Betti numbers of are eventually nondecreasing, then the dimension of any sufficiently high syzygy module of coincides with the dimension of .
 1.
Luchezar
L. Avramov, Local algebra and rational homotopy, Algebraic
homotopy and local algebra (Luminy, 1982) Astérisque,
vol. 113, Soc. Math. France, Paris, 1984, pp. 15–43. MR 749041
(85j:55021)
 2.
Luchezar
L. Avramov, Infinite free resolutions, Six lectures on
commutative algebra (Bellaterra, 1996) Progr. Math., vol. 166,
Birkhäuser, Basel, 1998, pp. 1–118. MR 1648664
(99m:13022)
 3.
Luchezar
L. Avramov, Vesselin
N. Gasharov, and Irena
V. Peeva, Complete intersection dimension, Inst. Hautes
Études Sci. Publ. Math. 86 (1997), 67–114
(1998). MR
1608565 (99c:13033)
 4.
Sangki
Choi, Betti numbers and the integral closure of ideals, Math.
Scand. 66 (1990), no. 2, 173–184. MR 1075135
(91m:13007)
 5.
Andrew
Crabbe, Daniel
Katz, Janet
Striuli, and Emanoil
Theodorescu, HilbertSamuel polynomials for the contravariant
extension functor, Nagoya Math. J. 198 (2010),
1–22. MR
2666575 (2011g:13033)
 6.
D. R. Grayson, M. E. Stillman, Macaulay2, a software system for research in algebraic geometry, http://www.math.uiuc.edu/Macaulay2/
 7.
Srikanth
B. Iyengar, Graham
J. Leuschke, Anton
Leykin, Claudia
Miller, Ezra
Miller, Anurag
K. Singh, and Uli
Walther, Twentyfour hours of local cohomology, Graduate
Studies in Mathematics, vol. 87, American Mathematical Society,
Providence, RI, 2007. MR 2355715
(2009a:13025)
 8.
Jack
Lescot, Séries de Poincaré et modules inertes,
J. Algebra 132 (1990), no. 1, 22–49 (French).
MR
1060830 (91k:13010), 10.1016/00218693(90)90250R
 9.
Satoru
Okiyama, A local ring is CM if and only if its residue field has a
CM syzygy, Tokyo J. Math. 14 (1991), no. 2,
489–500. MR 1138183
(92m:13017), 10.3836/tjm/1270130388
 10.
Paul
Roberts, Le théorème d’intersection, C. R.
Acad. Sci. Paris Sér. I Math. 304 (1987),
no. 7, 177–180 (French, with English summary). MR 880574
(89b:14008)
 11.
LiChuan
Sun, Growth of Betti numbers of modules over local rings of small
embedding codimension or small linkage number, J. Pure Appl. Algebra
96 (1994), no. 1, 57–71. MR 1297441
(95j:13014), 10.1016/00224049(94)900876
 12.
LiChuan
Sun, Growth of Betti numbers of modules over generalized Golod
rings, J. Algebra 199 (1998), no. 1,
88–93. MR
1489355 (98i:13023), 10.1006/jabr.1997.7170
 1.
 L. L. Avramov, Local algebra and rational homotopy, Homotopie algébrique et algèbre locale; Luminy, 1982 (J.M. Lemaire, J.C. Thomas, eds.), Astérisque 113114, Soc. Math. France, Paris, 1984, 1543. MR 749041 (85j:55021)
 2.
 L. L. Avramov, Infinite free resolutions, Six lectures on commutative algebra (Bellaterra, 1996), Prog. Math. 166, Birkhäuser, Basel, 1998, 1118. MR 1648664 (99m:13022)
 3.
 L. L. Avramov, V. N. Gasharov, I. V. Peeva, Complete intersection dimension, Publ. Math. I.H.E.S. 86 (1997), 67114. MR 1608565 (99c:13033)
 4.
 S. Choi, Betti numbers and the integral closure of an ideal, Math. Scand. 66 (1990), 173184. MR 1075135 (91m:13007)
 5.
 A. Crabbe, D. Katz, J. Striuli, E. Theodorescu, HilbertSamuel polynomials for the contravariant extension functor, Nagoya Math. J. 198 (2010), 122. MR 2666575 (2011g:13033)
 6.
 D. R. Grayson, M. E. Stillman, Macaulay2, a software system for research in algebraic geometry, http://www.math.uiuc.edu/Macaulay2/
 7.
 S. B. Iyengar, G. J. Leuschke, A. Leykin, C. Miller, E. Miller, A. K. Singh, and U. Walther, Twentyfour hours of local cohomology, Graduate Studies in Mathematics, 87, American Mathematical Society, Providence, RI, 2007. MR 2355715 (2009a:13025)
 8.
 J. Lescot, Séries de Poincaré et modules inertes, J. Algebra 132 (1990), 2249. MR 1060830 (91k:13010)
 9.
 S. Okiyama, A local ring is CM if and only if its residue field has a CM syzygy, Tokyo J. Math. 14 (1991), 489500. MR 1138183 (92m:13017)
 10.
 P. Roberts, Le théorème d'intersection, C. R. Acad. Sci., Paris Sér. I 304 (1987), 177180. MR 880574 (89b:14008)
 11.
 L.C. Sun, Growth of Betti numbers of modules over rings of small embedding codimension or small linkage number, J. Pure Appl. Algebra 96 (1994), 5771. MR 1297441 (95j:13014)
 12.
 L.C. Sun, Growth of Betti numbers of modules over generalized Golod rings, J. Algebra 199 (1998), 8893. MR 1489355 (98i:13023)
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC (2010):
13C15,
13D02,
13E05,
13D45
Retrieve articles in all journals
with MSC (2010):
13C15,
13D02,
13E05,
13D45
Additional Information
Kristen A. Beck
Affiliation:
Department of Mathematics, University of Texas at Arlington, P. O. Box 19408, Arlington, Texas 760190408
Email:
kbeck@uta.edu
Micah J. Leamer
Affiliation:
Department of Mathematics, University of NebraskaLincoln, P. O. Box 880130, Lincoln, Nebraska 685880130
Email:
smleamer1@math.unl.edu
DOI:
http://dx.doi.org/10.1090/S000299392013115108
Received by editor(s):
June 22, 2011
Received by editor(s) in revised form:
October 14, 2011
Published electronically:
March 8, 2013
Additional Notes:
This material is based on work that began at the 2011 Mathematical Research Community in Commutative Algebra, located in Snowbird, UT. The MRC was funded by the American Mathematical Society and the National Science Foundation.
The first author was partially supported by NSA Grant H982300710197.
The second author was funded in part by a GAANN grant from the Department of Education. Part of this work also appears in the second author’s Ph.D. thesis.
Communicated by:
Irena Peeva
Article copyright:
© Copyright 2013
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.
