Variation of Hilbert coefficients

Authors:
Laura Ghezzi, Shiro Goto, Jooyoun Hong and Wolmer V. Vasconcelos

Journal:
Proc. Amer. Math. Soc. **141** (2013), 3037-3048

MSC (2010):
Primary 13A30; Secondary 13B22, 13H10, 13H15

Published electronically:
June 3, 2013

MathSciNet review:
3068957

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For a Noetherian local ring , the first two Hilbert coefficients, and , of the -adic filtration of an -primary ideal are known to code for properties of , of the blowup of along , and even of their normalizations. We give estimations for these coefficients when is enlarged (in the case of in the same integral closure class) for general Noetherian local rings.

**[C]**Alberto Corso,*Sally modules of 𝔪-primary ideals in local rings*, Comm. Algebra**37**(2009), no. 12, 4503–4515. MR**2588863**, 10.1080/00927870802266490**[ES]**Paul Eakin and Avinash Sathaye,*Prestable ideals*, J. Algebra**41**(1976), no. 2, 439–454. MR**0419428****[E1]**Juan Elias,*On the first normalized Hilbert coefficient*, J. Pure Appl. Algebra**201**(2005), no. 1-3, 116–125. MR**2158750**, 10.1016/j.jpaa.2004.12.044**[E2]**Juan Elias,*Upper bounds of Hilbert coefficients and Hilbert functions*, Math. Proc. Cambridge Philos. Soc.**145**(2008), no. 1, 87–94. MR**2431640**, 10.1017/S0305004108001138**[GhGHOPV]**L. Ghezzi, S. Goto, J. Hong, K. Ozeki, T. T. Phuong, and W. V. Vasconcelos,*Cohen-Macaulayness versus the vanishing of the first Hilbert coefficient of parameter ideals*, J. Lond. Math. Soc. (2)**81**(2010), no. 3, 679–695. MR**2650791**, 10.1112/jlms/jdq008**[GhHV]**Laura Ghezzi, Jooyoun Hong, and Wolmer V. Vasconcelos,*The signature of the Chern coefficients of local rings*, Math. Res. Lett.**16**(2009), no. 2, 279–289. MR**2496744**, 10.4310/MRL.2009.v16.n2.a6**[GHM]**Shiro Goto, Jooyoun Hong, and Mousumi Mandal,*The positivity of the first coefficients of normal Hilbert polynomials*, Proc. Amer. Math. Soc.**139**(2011), no. 7, 2399–2406. MR**2784804**, 10.1090/S0002-9939-2010-10710-4**[GMP]**S. Goto, N. Matsuoka and T. T. Phuong, Almost Gorenstein rings, preprint. arXiv:1106.1301v2 [Math.AC].**[GO]**Shiro Goto and Kazuho Ozeki,*Buchsbaumness in local rings possessing constant first Hilbert coefficients of parameters*, Nagoya Math. J.**199**(2010), 95–105. MR**2730412****[HH]**Krishna Hanumanthu and Craig Huneke,*Bounding the first Hilbert coefficient*, Proc. Amer. Math. Soc.**140**(2012), no. 1, 109–117. MR**2833522**, 10.1090/S0002-9939-2011-11021-9**[Hu]**Craig Huneke,*Hilbert functions and symbolic powers*, Michigan Math. J.**34**(1987), no. 2, 293–318. MR**894879**, 10.1307/mmj/1029003560**[K]**D. Kirby,*A note on superficial elements of an ideal in a local ring*, Quart. J. Math. Oxford Ser. (2)**14**(1963), 21–28. MR**0143780****[MV]**Mousumi Mandal and J. K. Verma,*On the Chern number of an ideal*, Proc. Amer. Math. Soc.**138**(2010), no. 6, 1995–1999. MR**2596035**, 10.1090/S0002-9939-10-10266-4**[MSV]**Mousumi Mandal, Balwant Singh, and J. K. Verma,*On some conjectures about the Chern numbers of filtrations*, J. Algebra**325**(2011), 147–162. MR**2745533**, 10.1016/j.jalgebra.2010.10.008**[PUV]**Claudia Polini, Bernd Ulrich, and Wolmer V. Vasconcelos,*Normalization of ideals and Briançon-Skoda numbers*, Math. Res. Lett.**12**(2005), no. 5-6, 827–842. MR**2189243**, 10.4310/MRL.2005.v12.n6.a5**[R]**M. E. Rossi,*A bound on the reduction number of a primary ideal*, Proc. Amer. Math. Soc.**128**(2000), no. 5, 1325–1332. MR**1670423**, 10.1090/S0002-9939-99-05393-9**[RV1]**Maria Evelina Rossi and Giuseppe Valla,*The Hilbert function of the Ratliff-Rush filtration*, J. Pure Appl. Algebra**201**(2005), no. 1-3, 25–41. MR**2158745**, 10.1016/j.jpaa.2004.12.042**[RV2]**M. E. Rossi and G. Valla,*On the Chern number of a filtration*, Rend. Semin. Mat. Univ. Padova**121**(2009), 201–222. MR**2542142**, 10.4171/RSMUP/121-12**[S1]**Judith D. Sally,*Numbers of generators of ideals in local rings*, Marcel Dekker, Inc., New York-Basel, 1978. MR**0485852****[S2]**Judith D. Sally,*Hilbert coefficients and reduction number 2*, J. Algebraic Geom.**1**(1992), no. 2, 325–333. MR**1144442****[SV]**Judith D. Sally and Wolmer V. Vasconcelos,*Stable rings*, J. Pure Appl. Algebra**4**(1974), 319–336. MR**0409430****[V1]**Wolmer Vasconcelos,*Integral closure*, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2005. Rees algebras, multiplicities, algorithms. MR**2153889****[V2]**Wolmer V. Vasconcelos,*The Chern coefficients of local rings*, Michigan Math. J.**57**(2008), 725–743. Special volume in honor of Melvin Hochster. MR**2492478**, 10.1307/mmj/1220879434

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2010):
13A30,
13B22,
13H10,
13H15

Retrieve articles in all journals with MSC (2010): 13A30, 13B22, 13H10, 13H15

Additional Information

**Laura Ghezzi**

Affiliation:
Department of Mathematics, New York City College of Technology-CUNY, 300 Jay Street, Brooklyn, New York 11201

Email:
lghezzi@citytech.cuny.edu

**Shiro Goto**

Affiliation:
Department of Mathematics, School of Science and Technology, Meiji University, 1-1-1 Higashi-mita, Tama-ku, Kawasaki 214-8571, Japan

Email:
goto@math.meiji.ac.jp

**Jooyoun Hong**

Affiliation:
Department of Mathematics, Southern Connecticut State University, 501 Crescent Street, New Haven, Connecticut 06515-1533

Email:
hongj2@southernct.edu

**Wolmer V. Vasconcelos**

Affiliation:
Department of Mathematics, Rutgers University, 110 Frelinghuysen Road, Piscataway, New Jersey 08854-8019

Email:
vasconce@math.rutgers.edu

DOI:
https://doi.org/10.1090/S0002-9939-2013-11774-0

Received by editor(s):
August 22, 2011

Received by editor(s) in revised form:
December 3, 2011

Published electronically:
June 3, 2013

Additional Notes:
The first author was partially supported by a grant from the City University of New York PSC-CUNY Research Award Program-41

The second author was partially supported by Grant-in-Aid for Scientific Researches (C) in Japan (19540054) and by a grant from MIMS (Meiji Institute for Advanced Study of Mathematical Sciences)

The fourth author was partially supported by the NSF

Communicated by:
Irena Peeva

Article copyright:
© Copyright 2013
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.