On intersections of ranges of projections of norm one in Banach spaces
Author:
T. S. S. R. K. Rao
Journal:
Proc. Amer. Math. Soc. 141 (2013), 35793586
MSC (2010):
Primary 47L05; Secondary 46B20, 46E15
Published electronically:
July 9, 2013
MathSciNet review:
3080180
Fulltext PDF
Abstract 
References 
Similar Articles 
Additional Information
Abstract: In this short note we are interested in studying Banach spaces in which the range of a projection of norm one whose kernel is of finite dimension is the intersection of ranges of finitely many projections of norm one whose kernels are of dimension one. We show that for a certain class of Banach spaces , the natural duality between and can be exploited when the range of the projection is of finite codimension. We show that if is isometric to , then any central subspace of finite codimension is an intersection of central subspaces of codimension one. These results extend a recent result of Bandyopadhyay and Dutta which was proved for ranges of projections of norm one with finite dimensional kernel in continuous function spaces and unifies some earlier work of Baronti and Papini.
 1.
Pradipta
Bandyopadhyay and T.
S. S. R. K. Rao, Central subspaces of Banach spaces, J.
Approx. Theory 103 (2000), no. 2, 206–222. MR 1749962
(2001b:46022), 10.1006/jath.1999.3420
 2.
Pradipta
Bandyopadhyay and S.
Dutta, Almost constrained subspaces of Banach spaces. II,
Houston J. Math. 35 (2009), no. 3, 945–957. MR 2534290
(2011a:46023)
 3.
Marco
Baronti, A note on normone projections onto subspaces of finite
codimension of 𝑙^{∞}, Arch. Math. (Basel)
54 (1990), no. 4, 384–388. MR 1042133
(91c:46029), 10.1007/BF01189587
 4.
M.
Baronti and P.
Papini, Normone projections onto subspaces of finite codimension
in 𝑙₁ and 𝑐₀, Period. Math. Hungar.
22 (1991), no. 3, 161–174. MR 1142506
(93a:46034), 10.1007/BF01960506
 5.
J.
Blatter and E.
W. Cheney, Minimal projections on hyperplanes in sequence
spaces, Ann. Mat. Pura Appl. (4) 101 (1974),
215–227. MR 0358179
(50 #10644)
 6.
Á.
P. Bosznay and B.
M. Garay, On norms of projections, Acta Sci. Math. (Szeged)
50 (1986), no. 12, 87–92. MR 862183
(88d:47012)
 7.
P.
Harmand, D.
Werner, and W.
Werner, 𝑀ideals in Banach spaces and Banach algebras,
Lecture Notes in Mathematics, vol. 1547, SpringerVerlag, Berlin,
1993. MR
1238713 (94k:46022)
 8.
J.
E. Jamison, A.
Kamińska, and G.
Lewicki, Onecomplemented subspaces of MusielakOrlicz sequence
spaces, J. Approx. Theory 130 (2004), no. 1,
1–37. MR
2086807 (2005f:46035), 10.1016/j.jat.2004.07.001
 9.
Anna
Kamińska and Grzegorz
Lewicki, Contractive and optimal sets in modular spaces, Math.
Nachr. 268 (2004), 74–95. MR 2054533
(2005c:46033), 10.1002/mana.200310160
 10.
Anna
Kamińska, Han
Ju Lee, and Grzegorz
Lewicki, Extreme and smooth points in Lorentz and Marcinkiewicz
spaces with applications to contractive projections, Rocky Mountain J.
Math. 39 (2009), no. 5, 1533–1572. MR 2546654
(2010k:46014), 10.1216/RMJ20093951533
 11.
H.
Elton Lacey, The isometric theory of classical Banach spaces,
SpringerVerlag, New YorkHeidelberg, 1974. Die Grundlehren der
mathematischen Wissenschaften, Band 208. MR 0493279
(58 #12308)
 12.
Grzegorz
Lewicki and Giulio
Trombetta, Optimal and onecomplemented subspaces, Monatsh.
Math. 153 (2008), no. 2, 115–132. MR 2373365
(2010a:46073), 10.1007/s0060500705104
 13.
Joram
Lindenstrauss, Extension of compact operators, Mem. Amer.
Math. Soc. No. 48 (1964), 112. MR 0179580
(31 #3828)
 1.
 P. Bandyopadhyay and T. S. S. R. K. Rao, Central subspaces of Banach spaces, J. Approx. Theory 103 (2000), 206222. MR 1749962 (2001b:46022)
 2.
 P. Bandyopadhyay and S. Dutta, Almost constrained subspaces of Banach spaces. II, Houston J. Math. 35 (2009), 945957. MR 2534290 (2011a:46023)
 3.
 M. Baronti, A note on normone projections onto subspaces of finite codimension of , Arch. Math. (Basel) 54 (1990), 384388. MR 1042133 (91c:46029)
 4.
 M. Baronti and P. Papini, Normone projections onto subspaces of finite codimension in and , Period. Math. Hungar. 22 (1991), 161174. MR 1142506 (93a:46034)
 5.
 J. Blatter and E. W. Cheney, Minimal projections on hyperplanes in sequence spaces, Ann. Mat. Pura Appl. 101 (1974), 215227. MR 0358179 (50:10644)
 6.
 A. P. Bosznay and B. M. Garay, On norms of projections, Acta Sci. Math. (Szeged) 50 (1986), 8792. MR 862183 (88d:47012)
 7.
 P. Harmand, D. Werner and W. Werner, ideals in Banach spaces and Banach algebras, Lecture Notes in Mathematics, 1547. SpringerVerlag, Berlin, 1993. MR 1238713 (94k:46022)
 8.
 J. E. Jamison, A. Kamińska and G. Lewicki, Onecomplemented subspaces of MusielakOrlicz sequence spaces, J. Approximation Theory 130 (2004), 137. MR 2086807 (2005f:46035)
 9.
 A. Kamińska and G. Lewicki, Contractive and optimal sets in modular spaces, Math. Nachr. 268 (2004), 7495. MR 2054533 (2005c:46033)
 10.
 A. Kamińska, H. J. Lee and G. Lewicki, Extreme and smooth points in Lorentz and Marcinkiewicz spaces with applications to contractive projections, Rocky Mountain J. Math. 39 (2009), 15331572. MR 2546654 (2010k:46014)
 11.
 H. E. Lacey, The isometric theory of classical Banach spaces, Die Grundlehren der mathematischen Wissenschaften, Band 208. SpringerVerlag, New YorkHeidelberg, 1974. MR 0493279 (58:12308)
 12.
 G. Lewicki and G. Trombetta, Optimal and onecomplemented subspaces, Monatsh. Math. 153 (2008), 115132. MR 2373365 (2010a:46073)
 13.
 J. Lindenstrauss, Extension of compact operators, Mem. Amer. Math. Soc. No. 48 (1964), 112 pp. MR 0179580 (31:3828)
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC (2010):
47L05,
46B20,
46E15
Retrieve articles in all journals
with MSC (2010):
47L05,
46B20,
46E15
Additional Information
T. S. S. R. K. Rao
Affiliation:
Theoretical Statistics and Mathematics Unit, Indian Statistical Institute, R. V. College P. O., Bangalore 560059, India
Email:
tss@isibang.ac.in
DOI:
http://dx.doi.org/10.1090/S000299392013116394
Keywords:
Projections of norm one,
finite codimensional subspaces,
spaces of continuous functions
Received by editor(s):
July 11, 2011
Received by editor(s) in revised form:
January 5, 2012
Published electronically:
July 9, 2013
Communicated by:
Thomas Schlumprecht
Article copyright:
© Copyright 2013
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.
