Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

Request Permissions   Purchase Content 
 
 

 

Automatic continuity for the unitary group


Author: Todor Tsankov
Journal: Proc. Amer. Math. Soc. 141 (2013), 3673-3680
MSC (2010): Primary 54H12
DOI: https://doi.org/10.1090/S0002-9939-2013-11666-7
Published electronically: June 21, 2013
MathSciNet review: 3080189
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show that every homomorphism from the infinite-dimensional unitary or orthogonal group to a separable group is continuous.


References [Enhancements On Off] (What's this?)

  • [1] Alexandru Atim, Uniqueness results for the infinite unitary, orthogonal and associated groups, Ph.D. Thesis, University of North Texas, 2008. MR 2712123
  • [2] Itaï Ben Yaacov, Alexander Berenstein, and Julien Melleray, Polish topometric groups, 2010. preprint available at arXiv:1007.3367.
  • [3] M. Gromov and V. D. Milman, A topological application of the isoperimetric inequality, Amer. J. Math. 105 (1983), no. 4, 843-854. MR 708367 (84k:28012)
  • [4] Wilfrid Hodges, Ian Hodkinson, Daniel Lascar, and Saharon Shelah, The small index property for $ \omega $-stable $ \omega $-categorical structures and for the random graph, J. London Math. Soc. (2) 48 (1993), no. 2, 204-218. MR 1231710 (94d:03063)
  • [5] Paul R. Halmos and Shizuo Kakutani, Products of symmetries, Bull. Amer. Math. Soc. 64 (1958), 77-78. MR 0100225 (20:6658)
  • [6] Robert R. Kallman, Every reasonably sized matrix group is a subgroup of $ S_\infty $, Fund. Math. 164 (2000), no. 1, 35-40. MR 1784652 (2001h:20005)
  • [7] Alexander S. Kechris, Global aspects of ergodic group actions, Mathematical Surveys and Monographs, vol. 160, American Mathematical Society, Providence, RI, 2010. MR 2583950 (2011b:37003)
  • [8] A. A. Kirillov, Representations of the infinite-dimensional unitary group, Dokl. Akad. Nauk. SSSR 212 (1973), 288-290. MR 0340487 (49:5239)
  • [9] Alexander S. Kechris and Christian Rosendal, Turbulence, amalgamation and generic automorphisms of homogeneous structures, Proc. Lond. Math. Soc. 94 (2007), no. 2, 302-350. MR 2308230 (2008a:03079)
  • [10] John Kittrell and Todor Tsankov, Topological properties of full groups, Ergodic Theory Dynam. Systems 30 (2010), no. 2, 525-545. MR 2599891 (2011d:37006)
  • [11] G. I. Olshanski, Unitary representations of the infinite-dimensional classical groups $ {\rm U}(p,\,\infty )$, $ {\rm SO}\sb {0}(p,\,\infty )$, $ {\rm Sp}(p,\,\infty )$, and of the corresponding motion groups, Funktsional. Anal. i Prilozhen. 12 (1978), no. 3, 32-44, 96.
  • [12] Doug Pickrell, The separable representations of $ {\rm U}(H)$, Proc. Amer. Math. Soc. 102 (1988), no. 2, 416-420. MR 921009 (89c:22036)
  • [13] Christian Rosendal, Automatic continuity in homeomorphism groups of compact $ 2$-manifolds, Israel J. Math. 166 (2008), 349-367. MR 2430439 (2009f:57055)
  • [14] Christian Rosendal, Automatic continuity of group homomorphisms, Bull. Symbolic Logic 15 (2009), no. 2, 184-214. MR 2535429 (2011e:03064)
  • [15] Christian Rosendal, A topological version of the Bergman property, Forum Math. 21 (2009), no. 2, 299-332. MR 2503307 (2010a:03054)
  • [16] Christian Rosendal and Sławomir Solecki, Automatic continuity of homomorphisms and fixed points on metric compacta, Israel J. Math. 162 (2007), 349-371. MR 2365867 (2009d:54016)
  • [17] L. Stojanov, Total minimality of the unitary groups, Math. Z. 187 (1984), no. 2, 273-283. MR 753438 (85k:22008)
  • [18] Simon Thomas, Infinite products of finite simple groups. II, J. Group Theory 2 (1999), no. 4, 401-434. MR 1718758 (2000m:20043)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 54H12

Retrieve articles in all journals with MSC (2010): 54H12


Additional Information

Todor Tsankov
Affiliation: Institut de Mathématiques de Jussieu, case 7012, Université Paris 7, 75205 Paris Cedex 13, France
Email: todor@math.jussieu.fr

DOI: https://doi.org/10.1090/S0002-9939-2013-11666-7
Keywords: Unitary group, automatic continuity
Received by editor(s): September 6, 2011
Received by editor(s) in revised form: December 23, 2011
Published electronically: June 21, 2013
Additional Notes: This research was partially supported by the ANR network AGORA, NT09-461407.
Communicated by: Thomas Schlumprecht
Article copyright: © Copyright 2013 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society