Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Exponent bounds for a convolution inequality in Euclidean space with applications to the Navier-Stokes equations


Authors: Chris Orum and Mina Ossiander
Journal: Proc. Amer. Math. Soc. 141 (2013), 3883-3897
MSC (2010): Primary 35Q30, 76D05, 42B37; Secondary 76M35, 39B72, 60J80
DOI: https://doi.org/10.1090/S0002-9939-2013-11662-X
Published electronically: July 30, 2013
MathSciNet review: 3091777
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The convolution inequality $ h*h(\xi ) \leq B \vert\xi \vert^\theta h(\xi )$ defined on $ \mathbf {R}^n$ arises from a probabilistic representation of solutions of the $ n$-dimensional Navier-Stokes equations, $ n \geq 2$. Using a chaining argument, we establish in all dimensions $ n \geq 1$ the nonexistence of strictly positive fully supported solutions of this inequality for $ \theta \geq n/2.$ We use this result to describe a chain of continuous embeddings from spaces associated with probabilistic solutions to the spaces $ BMO^{-1}$ and $ BMO_T^{-1}$ associated with the Koch-Tataru solutions of the Navier-Stokes equations.


References [Enhancements On Off] (What's this?)

  • 1. Hajer Bahouri, Jean-Yves Chemin, and Raphaël Danchin.
    Fourier analysis and nonlinear partial differential equations, volume 343 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences].
    Springer, Heidelberg, 2011. MR 2768550 (2011m:35004)
  • 2. Yu. Yu. Bakhtin, E. I. Dinaburg, and Ya. G. Sinaĭ.
    On solutions with infinite energy and enstrophy of the Navier-Stokes system.
    Uspekhi Mat. Nauk, 59(6(360)):55-72, 2004. MR 2138467 (2006g:35202)
  • 3. Rabi N. Bhattacharya, Larry Chen, Scott Dobson, Ronald B. Guenther, Chris Orum, Mina Ossiander, Enrique Thomann, and Edward C. Waymire.
    Majorizing kernels and stochastic cascades with applications to incompressible Navier-Stokes equations.
    Trans. Amer. Math. Soc., 355(12):5003-5040 (electronic), 2003. MR 1997593 (2004k:35294)
  • 4. Rabi N. Bhattacharya, Larry Chen, Ronald B. Guenther, Chris Orum, Mina Ossiander, Enrique Thomann, and Edward C. Waymire.
    Semi-Markov cascade representations of local solutions to 3-d incompressible Navier-Stokes.
    In Probability and Partial Differential Equations in Modern Applied Mathematics, volume 140 of The IMA Volumes in Mathematics and its Applications. Springer-Verlag, New York, 2005.
  • 5. D. Blömker, M. Romito, and R. Tribe.
    A probabilistic representation for the solutions to some non-linear PDEs using pruned branching trees.
    Ann. Inst. H. Poincaré Probab. Statist., 43(2):175-192, 2007. MR 2303118 (2008c:60083)
  • 6. Marco Cannone.
    Viscous flows in Besov spaces.
    In Advances in mathematical fluid mechanics (Paseky, 1999), pages 1-34. Springer, Berlin, 2000. MR 1863208 (2003f:76027)
  • 7. Marco Cannone.
    Harmonic analysis tools for solving the incompressible Navier-Stokes equations.
    In Handbook of mathematical fluid dynamics. Vol. III, pages 161-244. North-Holland, Amsterdam, 2004. MR 2099035 (2006c:35216)
  • 8. Marco Cannone and Grzegorz Karch.
    Smooth or singular solutions to the Navier-Stokes system?
    J. Differential Equations, 197(2):247-274, 2004. MR 2034160 (2005g:35228)
  • 9. Larry Chen, Scott Dobson, Ronald Guenther, Chris Orum, Mina Ossiander, Enrique Thomann, and Edward Waymire.
    On Itô's complex measure condition.
    In Probability, statistics and their applications: papers in honor of Rabi Bhattacharya, volume 41 of IMS Lecture Notes Monogr. Ser., pages 65-80. Inst. Math. Statist., Beachwood, OH, 2003. MR 1999415 (2004f:60163)
  • 10. Larry Chen, Ronald B. Guenther, Sun-Chul Kim, Enrique A. Thomann, and Edward C. Waymire.
    A rate of convergence for the $ {\rm LANS}\alpha $ regularization of Navier-Stokes equations.
    J. Math. Anal. Appl., 348(2):637-649, 2008. MR 2445766 (2009i:76044)
  • 11. Loukas Grafakos.
    Modern Fourier analysis, volume 250 of Graduate Texts in Mathematics.
    Springer, New York, second edition, 2009. MR 2463316 (2011d:42001)
  • 12. Massimiliano Gubinelli.
    Rooted trees for 3D Navier-Stokes equation.
    Dyn. Partial Differ. Equ., 3(2):161-172, 2006. MR 2227041 (2007i:35179)
  • 13. Herbert Koch and Daniel Tataru.
    Well-posedness for the Navier-Stokes equations.
    Adv. Math., 157(1):22-35, 2001. MR 1808843 (2001m:35257)
  • 14. Y. Le Jan and A. S. Sznitman.
    Stochastic cascades and $ 3$-dimensional Navier-Stokes equations.
    Probab. Theory Related Fields, 109(3):343-366, 1997. MR 1481125 (98j:35144)
  • 15. P. G. Lemarié-Rieusset.
    Recent developments in the Navier-Stokes problem, volume 431 of Chapman & Hall/CRC Research Notes in Mathematics.
    Chapman & Hall/CRC, Boca Raton, FL, 2002. MR 1938147 (2004e:35178)
  • 16. Yves Meyer.
    Oscillating patterns in some nonlinear evolution equations.
    In Mathematical foundation of turbulent viscous flows, volume 1871 of Lecture Notes in Math., pages 101-187. Springer, Berlin, 2006. MR 2196363 (2007a:35069)
  • 17. Hideyuki Miura.
    Remark on uniqueness of mild solutions to the Navier-Stokes equations.
    J. Funct. Anal., 218(1):110-129, 2005. MR 2101216 (2005h:35272)
  • 18. Francesco Morandin.
    A resummed branching process representation for a class of nonlinear ODEs.
    Electron. Comm. Probab., 10:1-6 (electronic), 2005. MR 2119148 (2006a:60161)
  • 19. Mina Ossiander.
    A probabilistic representation of solutions of the incompressible Navier-Stokes equations in $ \mathbf R\sp 3$.
    Probab. Theory Related Fields, 133(2):267-298, 2005. MR 2198702 (2007f:76159)
  • 20. Ya. G. Sinaĭ.
    A diagrammatic approach to the 3D Navier-Stokes system.
    Uspekhi Mat. Nauk, 60(5(365)):47-70, 2005.
    English translation in: Russian Math. Surveys 60 (2005), no. 5, 849-873. MR 2195676 (2007e:76055)
  • 21. Ya. G. Sinai.
    On local and global existence and uniqueness of solutions of the 3D Navier-Stokes system on $ \mathbf R^3$.
    In Perspectives in analysis, volume 27 of Math. Phys. Stud., pages 269-281. Springer, Berlin, 2005. MR 2215729 (2007b:35254)
  • 22. Yakov Sinai.
    Power series for solutions of the 3D-Navier-Stokes system on $ {\mathbf R}^3$.
    J. Stat. Phys., 121(5-6):779-803, 2005. MR 2192534 (2009d:76039)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 35Q30, 76D05, 42B37, 76M35, 39B72, 60J80

Retrieve articles in all journals with MSC (2010): 35Q30, 76D05, 42B37, 76M35, 39B72, 60J80


Additional Information

Chris Orum
Affiliation: Department of Mathematics, University of Utah, 155 S. 1400 E., Room 233, Salt Lake City, Utah 84112-0090
Address at time of publication: Mathematics Program, Eastern Oregon University, La Grande, Oregon 97850
Email: orum@math.utah.edu, orum@math.utah.edu

Mina Ossiander
Affiliation: Department of Mathematics, Oregon State University, Corvallis, Oregon 97331-4605
Email: ossiand@math.oregonstate.edu

DOI: https://doi.org/10.1090/S0002-9939-2013-11662-X
Received by editor(s): January 13, 2011
Received by editor(s) in revised form: January 22, 2012
Published electronically: July 30, 2013
Additional Notes: This work was partially supported by the U.S. National Science Foundation through the Focussed Research Group collaborative awards DMS-0073958 and DMS-0940249
Communicated by: Walter Craig
Article copyright: © Copyright 2013 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society