Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On the classifying space for the family of virtually cyclic subgroups for elementary amenable groups


Authors: Martin G. Fluch and Brita E. A. Nucinkis
Journal: Proc. Amer. Math. Soc. 141 (2013), 3755-3769
MSC (2010): Primary 20J05
DOI: https://doi.org/10.1090/S0002-9939-2013-11679-5
Published electronically: July 16, 2013
MathSciNet review: 3091766
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show that every elementary amenable group that has a bound on the orders of its finite subgroups admits a finite dimensional model for $ {\underline {\underline E}}G$, the classifying space for actions with virtually cyclic isotropy.


References [Enhancements On Off] (What's this?)

  • [1] R. Bieri, Homological dimension of discrete groups, Second ed., Queen Mary College Mathematical Notes, Queen Mary College, Department of Pure Mathematics, London, 1981. MR 715779 (84h:20047)
  • [2] G. E. Bredon, Equivariant cohomology theories, Lecture Notes in Mathematics, No. 34, Springer-Verlag, Berlin, 1967. MR 0214062 (35:4914)
  • [3] K. S. Brown, Cohomology of groups, Graduate Texts in Mathematics, vol. 87, Springer-Verlag, New York, 1982. MR 672956 (83k:20002)
  • [4] D. Degrijse and N. Petrosyan, Commensurators and classifying spaces with virtually cyclic stabilizers (2011), available at arxiv:1108.6279v1.
  • [5] F. Dembegioti, N. Petrosyan, and O. Talelli, Intermediaries in Bredon (Co)homology and Classifying Spaces (2011), available at arXiv:1104.2539v1.
  • [6] W. Dicks, P. H. Kropholler, I. J. Leary, and S. Thomas, Classifying spaces for proper actions of locally finite groups, J. Group Theory 5 (2002), no. 4, 453-480. MR 1931370 (2003g:20064)
  • [7] D. Farley, Constructions of $ E_{\scr {VC}}$ and $ E_{\scr {FBC}}$ for groups acting on CAT(0) spaces, Algebr. Geom. Topol. 10 (2010), no. 4, 2229-2250. MR 2745670
  • [8] R. J. Flores and B. E. A. Nucinkis, On Bredon homology of elementary amenable groups, Proc. Amer. Math. Soc. 135 (2007), no. 1, 5-11 (electronic). MR 2280168
  • [9] M. Fluch, On Bredon (Co-)Homological Dimensions of Groups, Ph.D. thesis, University of Southampton (2010), available at arXiv:1009.4633v1.
  • [10] M. Fluch, Classifying spaces with virtually cyclic stabilisers for certain infinite cyclic extensions, J. Pure Appl. Algebra 215 (2011), no. 10, 2423-2430. MR 2793946
  • [11] J. A. Hillman and P. A. Linnell, Elementary amenable groups of finite Hirsch length are locally-finite by virtually-solvable, J. Austral. Math. Soc. Ser. A 52 (1992), no. 2, 237-241. MR 1143191 (93b:20067)
  • [12] D. Juan-Pineda and I. J. Leary, On classifying spaces for the family of virtually cyclic subgroups, Recent developments in algebraic topology, Amer. Math. Soc., 2006, pp. 135-145. MR 2248975 (2007d:19001)
  • [13] D. H. Kochloukova, C. Martínez-Pérez, and B. E. A. Nucinkis, Cohomological finiteness conditions in Bredon cohomology, Bull. Lond. Math. Soc. 43 (2011), no. 1, 124-136. MR 2765556 (2012b:20124)
  • [14] P. H. Kropholler, C. Martínez-Pérez, and B. E. A. Nucinkis, Cohomological finiteness conditions for elementary amenable groups, J. Reine Angew. Math. 637 (2009), 49-62. MR 2599081
  • [15] P. H. Kropholler, Cohomological dimension of soluble groups, J. Pure Appl. Algebra 43 (1986), no. 3, 281-287. MR 868988 (88h:20063)
  • [16] P. H. Kropholler, On groups of type $ ({\rm FP})\sb \infty $, J. Pure Appl. Algebra 90 (1993), no. 1, 55-67. MR 1246274 (94j:20051b)
  • [17] J.-F. Lafont and I. J. Ortiz, Relative hyperbolicity, classifying spaces, and lower algebraic $ K$-theory, Topology 46 (2007), no. 6, 527-553. MR 2363244
  • [18] F. Leonardi, Künneth formula for Bredon homology and group C*-algebras, ProQuest LLC, Ann Arbor, MI, 2006. Thesis (Ph.D.)-Eidgenoessische Technische Hochschule Zürich (Switzerland). MR 2715889
  • [19] W. Lück, Transformation groups and algebraic $ K$-theory, Lecture Notes in Mathematics, vol. 1408, Springer-Verlag, Berlin, 1989. Mathematica Gottingensis. MR 1027600 (91g:57036)
  • [20] W. Lück, The type of the classifying space for a family of subgroups, J. Pure Appl. Algebra 149 (2000), no. 2, 177-203. MR 1757730 (2001i:55018)
  • [21] W. Lück, Survey on classifying spaces for families of subgroups, Infinite groups: geometric, combinatorial and dynamical aspects, Birkhäuser, Basel, 2005, pp. 269-322. MR 2195456 (2006m:55036)
  • [22] W. Lück, On the classifying space of the family of virtually cyclic subgroups for $ \rm CAT(0)$-groups, Münster J. Math. 2 (2009), 201-214. MR 2545612
  • [23] W. Lück and D. Meintrup, On the universal space for group actions with compact isotropy, Geometry and topology: Aarhus (1998), Amer. Math. Soc., 2000, pp. 293-305. MR 1778113 (2001e:55023)
  • [24] W. Lück and M. Weiermann, On the classifying space of the family of virtually cyclic subgroups, Pure App. Math. Q. 8 (2012), no. 2, 479-555. MR 2900176
  • [25] S. Mac Lane, Categories for the working mathematician, Second ed., Graduate Texts in Mathematics, vol. 5, Springer-Verlag, New York, 1998. MR 1712872 (2001j:18001)
  • [26] C. Martínez-Pérez, A spectral sequence in Bredon (co)homology, J. Pure Appl. Algebra 176 (2002), no. 2-3, 161-173. MR 1933713 (2003h:20095)
  • [27] G. Mislin and A. Valette, Proper group actions and the Baum-Connes conjecture, Advanced Courses in Mathematics. CRM Barcelona, Birkhäuser Verlag, Basel, 2003. MR 2027168 (2005d:19007)
  • [28] B. E. A. Nucinkis, On dimensions in Bredon homology, Homology Homotopy Appl. 6 (2004), no. 1, 33-47 (electronic). MR 2061566 (2005c:20092)
  • [29] D. J. S. Robinson, A course in the theory of groups, Second ed., Graduate Texts in Mathematics, vol. 80, Springer-Verlag, New York, 1996. MR 1357169 (96f:20001)
  • [30] R. J. Sánchez-García, Equivariant $ K$-homology for some Coxeter groups, J. Lond. Math. Soc. (2) 75 (2007), no. 3, 773-790. MR 2352735 (2009b:19006)
  • [31] H. Schubert, Kategorien II, Heidelberger Taschenbücher, vol. 66, Springer-Verlag, Berlin, 1970. MR 0274548 (43:311)
  • [32] P. Symonds, The Bredon cohomology of subgroup complexes, J. Pure Appl. Algebra 199 (2005), no. 1-3, 261-298. MR 2134305 (2006e:20093)
  • [33] B. A. F. Wehrfritz, Groups of automorphisms of soluble groups, Proc. London Math. Soc. (3) 20 (1970), 101-122. MR 0251120 (40:4351)
  • [34] B. A. F. Wehrfritz, On elementary amenable groups of finite Hirsch number, J. Austral. Math. Soc. Ser. A 58 (1995), no. 2, 219-221. MR 1323993 (96a:20050)
  • [35] C. A. Weibel, An introduction to homological algebra, Cambridge Studies in Advanced Mathematics, vol. 38, Cambridge University Press, Cambridge, 1994. MR 1269324 (95f:18001)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 20J05

Retrieve articles in all journals with MSC (2010): 20J05


Additional Information

Martin G. Fluch
Affiliation: Department of Mathematics, Bielefeld University, Postbox 100131, 33501 Bielefeld, Germany
Email: mfluch@math.uni-bielefeld.de

Brita E. A. Nucinkis
Affiliation: School of Mathematics, University of Southampton, Southampton, SO17 1BJ, United Kingdom
Address at time of publication: Department of Mathematics, Royal Holloway University of London, Egham, TW20 0EX, United Kingdom
Email: B.E.A.Nucinkis@soton.ac.uk, Brita.Nucinkis@rhul.ac.uk

DOI: https://doi.org/10.1090/S0002-9939-2013-11679-5
Received by editor(s): April 4, 2011
Received by editor(s) in revised form: January 19, 2012
Published electronically: July 16, 2013
Communicated by: Brooke Shipley
Article copyright: © Copyright 2013 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society