Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



One-parameter families of circle diffeomorphisms with strictly monotone rotation number

Author: Kiran Parkhe
Journal: Proc. Amer. Math. Soc. 141 (2013), 4327-4337
MSC (2010): Primary 37C15, 37E10, 37E45; Secondary 37C05
Published electronically: August 22, 2013
MathSciNet review: 3105874
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show that if $ f \colon S^1 \times S^1 \to S^1 \times S^1$ is $ C^2$, with $ f(x, t) = (f_t(x), t)$, and the rotation number of $ f_t$ is equal to $ t$ for all $ t \in S^1$, then $ f$ is topologically conjugate to the linear Dehn twist of the torus $ \left ( \begin {smallmatrix}1&1\\ 0&1 \end{smallmatrix} \right )$. We prove a differentiability result where the assumption that the rotation number of $ f_t$ is $ t$ is weakened to say that the rotation number is strictly monotone in $ t$.

References [Enhancements On Off] (What's this?)

  • [1] Pavol Brunovský, Generic properties of the rotation number of one-parameter diffeomorphisms of the circle, Czechoslovak Math. J. 24(99) (1974), 74–90. MR 0346845
  • [2] Welington de Melo and Sebastian van Strien, One-dimensional dynamics, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 25, Springer-Verlag, Berlin, 1993. MR 1239171
  • [3] Étienne Ghys, Groups acting on the circle, Enseign. Math. (2) 47 (2001), no. 3-4, 329–407. MR 1876932
  • [4] Michael-Robert Herman, Mesure de Lebesgue et nombre de rotation, Geometry and topology (Proc. III Latin Amer. School of Math., Inst. Mat. Pura Aplicada CNPq, Rio de Janeiro, 1976) Springer, Berlin, 1977, pp. 271–293. Lecture Notes in Math., Vol 597 (French). MR 0458480
  • [5] Michael-Robert Herman, Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations, Inst. Hautes Études Sci. Publ. Math. 49 (1979), 5–233 (French). MR 538680
  • [6] Shigenori Matsumoto, Derivatives of rotation number of one parameter families of circle diffeomorphisms, Kodai Math. J. 35 (2012), no. 1, 115–125. MR 2911269,
  • [7] Andrés Navas, Groups of circle diffeomorphisms, Translation of the 2007 Spanish edition, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 2011. MR 2809110

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 37C15, 37E10, 37E45, 37C05

Retrieve articles in all journals with MSC (2010): 37C15, 37E10, 37E45, 37C05

Additional Information

Kiran Parkhe
Affiliation: Department of Mathematics, Northwestern University, 2033 Sheridan Road, Evanston, Illinois 60208-2730

Keywords: Rotation number, strict monotonicity, topological conjugacy
Received by editor(s): December 12, 2011
Received by editor(s) in revised form: February 7, 2012, and February 14, 2012
Published electronically: August 22, 2013
Communicated by: Bryna Kra
Article copyright: © Copyright 2013 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society