Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Parametrization of rational maps on a variety of general type, and the finiteness theorem


Authors: Lucio Guerra and Gian Pietro Pirola
Journal: Proc. Amer. Math. Soc. 142 (2014), 93-100
MSC (2010): Primary 14E05, 14N05
DOI: https://doi.org/10.1090/S0002-9939-2013-11750-8
Published electronically: September 27, 2013
MathSciNet review: 3119184
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In a previous paper we provided some update in the treatment of the finiteness theorem for rational maps of finite degree from a fixed variety to varieties of general type. In the present paper we present another improvement, introducing the natural parametrization of maps by means of the space of linear projections in a suitable projective space, and this leads to some new insight into the geometry of the finiteness theorem.


References [Enhancements On Off] (What's this?)

  • [1] J. A. Chen, M. Chen. Explicit birational geometry of 3-folds of general type, II. J. Differential Geom. 86 (2010), 237-271. MR 2772551 (2012b:14020)
  • [2] William Fulton, Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. (3) [Results in Mathematics and Related Areas (3)], vol. 2, Springer-Verlag, Berlin, 1984. MR 732620 (85k:14004)
  • [3] Lucio Guerra and Gian Pietro Pirola, On the finiteness theorem for rational maps on a variety of general type, Collect. Math. 60 (2009), no. 3, 261-276. MR 2560970 (2010m:14016), https://doi.org/10.1007/BF03191371
  • [4] Christopher D. Hacon and James McKernan, Boundedness of pluricanonical maps of varieties of general type, Invent. Math. 166 (2006), no. 1, 1-25. MR 2242631 (2007e:14022), https://doi.org/10.1007/s00222-006-0504-1
  • [5] Shoshichi Kobayashi and Takushiro Ochiai, Meromorphic mappings onto compact complex spaces of general type, Invent. Math. 31 (1975), no. 1, 7-16. MR 0402127 (53 #5948)
  • [6] R. Lazarsfeld. Positivity in algebraic geometry. I. Ergeb. Math. Grenzgebiete. (3), vol. 48, Springer-Verlag, Berlin, 2004. MR 2095471 (2005k:14001a)
  • [7] Kazuhisa Maehara, A finiteness property of varieties of general type, Math. Ann. 262 (1983), no. 1, 101-123. MR 690010 (85e:14015), https://doi.org/10.1007/BF01474173
  • [8] Shigeharu Takayama, Pluricanonical systems on algebraic varieties of general type, Invent. Math. 165 (2006), no. 3, 551-587. MR 2242627 (2007m:14014), https://doi.org/10.1007/s00222-006-0503-2
  • [9] Shigeharu Takayama, On the invariance and the lower semi-continuity of plurigenera of algebraic varieties, J. Algebraic Geom. 16 (2007), no. 1, 1-18. MR 2257317 (2007i:32021), https://doi.org/10.1090/S1056-3911-06-00455-3

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 14E05, 14N05

Retrieve articles in all journals with MSC (2010): 14E05, 14N05


Additional Information

Lucio Guerra
Affiliation: Dipartimento di Matematica e Informatica, Università di Perugia, Via Vanvitelli 1, 06123 Perugia, Italia
Email: lucio.guerra@unipg.it

Gian Pietro Pirola
Affiliation: Dipartimento di Matematica, Università di Pavia, via Ferrata 1, 27100 Pavia, Italia
Email: gianpietro.pirola@unipv.it

DOI: https://doi.org/10.1090/S0002-9939-2013-11750-8
Keywords: Rational maps, pluricanonical maps, varieties of general type, canonical volume
Received by editor(s): October 17, 2011
Received by editor(s) in revised form: March 2, 2012
Published electronically: September 27, 2013
Communicated by: Lev Borisov
Article copyright: © Copyright 2013 American Mathematical Society

American Mathematical Society