Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

Request Permissions   Purchase Content 
 
 

 

Lower bounds for the constants in the Bohnenblust-Hille inequality: The case of real scalars


Authors: D. Diniz, G. A. Muñoz-Fernández, D. Pellegrino and J. B. Seoane-Sepúlveda
Journal: Proc. Amer. Math. Soc. 142 (2014), 575-580
MSC (2010): Primary 46G25, 47H60
DOI: https://doi.org/10.1090/S0002-9939-2013-11791-0
Published electronically: October 25, 2013
MathSciNet review: 3133998
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The Bohnenblust-Hille inequality was obtained in 1931 and (in the case of real scalars) asserts that for every positive integer $ m$ there is a constant $ C_{m}$ so that

$\displaystyle \left ( \sum \limits _{i_{1},...,i_{m}=1}^{N}\left \vert T(e_{i_{... ...{\frac {2m}{m+1}}\right ) ^{\frac {m+1}{2m}}\leq C_{m}\left \Vert T\right \Vert$    

for all positive integers $ N$ and every $ m$-linear mapping $ T:\ell _{\infty }^{N}\times \cdots \times \ell _{\infty }^{N}\rightarrow \mathbb{R}$. Since then, several authors have obtained upper estimates for the values of $ C_{m}$. However, the novelty presented in this short note is that we provide lower (and non-trivial) bounds for $ C_{m}$.

References [Enhancements On Off] (What's this?)

  • [1] S. Aaronson and A. Ambainis, The Need for Structure in Quantum Speedups, Electronic Colloquium on Computational Complexity 110 (2009).
  • [2] H. F. Bohnenblust and Einar Hille, On the absolute convergence of Dirichlet series, Ann. of Math. (2) 32 (1931), no. 3, 600-622. MR 1503020, https://doi.org/10.2307/1968255
  • [3] A. M. Davie, Quotient algebras of uniform algebras, J. London Math. Soc. (2) 7 (1973), 31-40. MR 0324427 (48 #2779)
  • [4] Andreas Defant, Leonhard Frerick, Joaquim Ortega-Cerdà, Myriam Ounaïes, and Kristian Seip, The Bohnenblust-Hille inequality for homogeneous polynomials is hypercontractive, Ann. of Math. (2) 174 (2011), no. 1, 485-497. MR 2811605 (2012e:32005), https://doi.org/10.4007/annals.2011.174.1.13
  • [5] Andreas Defant, Dumitru Popa, and Ursula Schwarting, Coordinatewise multiple summing operators in Banach spaces, J. Funct. Anal. 259 (2010), no. 1, 220-242. MR 2610385 (2011d:47046), https://doi.org/10.1016/j.jfa.2010.01.008
  • [6] Andreas Defant and Pablo Sevilla-Peris, A new multilinear insight on Littlewood's 4/3-inequality, J. Funct. Anal. 256 (2009), no. 5, 1642-1664. MR 2490233 (2010h:46063), https://doi.org/10.1016/j.jfa.2008.07.005
  • [7] D. Diniz, G. A. Muñoz-Fernández, D. Pellegrino, and J. B. Seoane-Sepúlveda, The asymptotic growth of the constants in the Bohnenblust-Hille inequality is optimal, J. Funct. Anal. 263 (2012), no. 2, 415-428. MR 2923418
  • [8] M. Junge, C. Palazuelos, D. Pérez-García, I. Villanueva, and M. M. Wolf, Unbounded violations of bipartite Bell inequalities via operator space theory, Comm. Math. Phys. 300 (2010), no. 3, 715-739. MR 2736960 (2012e:81023), https://doi.org/10.1007/s00220-010-1125-5
  • [9] Sten Kaijser, Some results in the metric theory of tensor products, Studia Math. 63 (1978), no. 2, 157-170. MR 511301 (80c:46069)
  • [10] J.E. Littlewood, On bounded bilinear forms in an infinite number of variables, Q. J. Math. 1 (1930), 164-174.
  • [11] G. A. Muñoz-Fernández, D. Pellegrino, and J. B. Seoane-Sepúlveda, Estimates for the asymptotic behavior of the constants in the Bohnenblust-Hille inequality, Linear Multilinear Algebra 60 (2012), no. 5, 573-582. MR 2916842
  • [12] Daniel Pellegrino and Juan B. Seoane-Sepúlveda, New upper bounds for the constants in the Bohnenblust-Hille inequality, J. Math. Anal. Appl. 386 (2012), no. 1, 300-307. MR 2834886 (2012g:46036), https://doi.org/10.1016/j.jmaa.2011.08.004

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 46G25, 47H60

Retrieve articles in all journals with MSC (2010): 46G25, 47H60


Additional Information

D. Diniz
Affiliation: Unidade Academica de Matemática e Estatística, Universidade Federal de Campina Grande, Caixa Postal 10044, Campina Grande, 58429-970, Brazil
Email: diogo@dme.ufcg.edu.br

G. A. Muñoz-Fernández
Affiliation: Departamento de Análisis Matemático, Facultad de Ciencias Matemáticas, Universidad Complutense de Madrid, Plaza de Ciencias 3, Madrid, 28040, Spain
Email: gustavo$\textunderscore$fernandez@mat.ucm.es

D. Pellegrino
Affiliation: Departamento de Matemática, Universidade Federal da Paraíba, 58.051-900 - João Pessoa, Brazil
Email: pellegrino@pq.cnpq.br, dmpellegrino@gmail.com

J. B. Seoane-Sepúlveda
Affiliation: Departamento de Análisis Matemático, Facultad de Ciencias Matemáticas, Universidad Complutense de Madrid, Plaza de Ciencias 3, Madrid, 28040, Spain
Email: jseoane@mat.ucm.es

DOI: https://doi.org/10.1090/S0002-9939-2013-11791-0
Keywords: Absolutely summing operators, Bohnenblust--Hille Theorem, Bohnenblust--Hille inequality
Received by editor(s): November 18, 2011
Received by editor(s) in revised form: March 23, 2012
Published electronically: October 25, 2013
Additional Notes: The second and fourth authors were supported by the Spanish Ministry of Science and Innovation (grant MTM2009-07848)
The third author was supported by CNPq Grant 301237/2009-3, CAPES-NF and INCT-Matemática.
Communicated by: Marius Junge
Article copyright: © Copyright 2013 American Mathematical Society

American Mathematical Society