Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

Request Permissions   Purchase Content 
 
 

 

Absolutely continuous spectrum of a typical Schrödinger operator with a slowly decaying potential


Author: Oleg Safronov
Journal: Proc. Amer. Math. Soc. 142 (2014), 639-649
MSC (2010): Primary 81U05, 47F05
DOI: https://doi.org/10.1090/S0002-9939-2013-12186-6
Published electronically: October 11, 2013
MathSciNet review: 3134004
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study a family of Schrödinger operators $ -{\Delta }+\alpha V$. We find conditions on $ V$ that guarantee that the a.c. spectrum of the operator covers the interval $ [0,\infty )$ for almost every $ \alpha $.


References [Enhancements On Off] (What's this?)

  • [1] P. Deift and R. Killip, On the absolutely continuous spectrum of one-dimensional Schrödinger operators with square summable potentials, Comm. Math. Phys. 203 (1999), no. 2, 341-347. MR 1697600 (2000c:34223), https://doi.org/10.1007/s002200050615
  • [2] Sergey A. Denisov, On the absolutely continuous spectrum of Dirac operator, Comm. Partial Differential Equations 29 (2004), no. 9-10, 1403-1428. MR 2103841 (2006c:35242), https://doi.org/10.1081/PDE-200037758
  • [3] Sergey A. Denisov, Absolutely continuous spectrum of multidimensional Schrödinger operator, Int. Math. Res. Not. 74 (2004), 3963-3982. MR 2103798 (2005h:35047), https://doi.org/10.1155/S107379280414141X
  • [4] Sergey A. Denisov, On the preservation of absolutely continuous spectrum for Schrödinger operators, J. Funct. Anal. 231 (2006), no. 1, 143-156. MR 2190166 (2006m:35048), https://doi.org/10.1016/j.jfa.2005.03.025
  • [5] Sergey A. Denisov, Schrödinger operators and associated hyperbolic pencils, J. Funct. Anal. 254 (2008), no. 8, 2186-2226. MR 2402106 (2009g:47111), https://doi.org/10.1016/j.jfa.2008.01.009
  • [6] Rowan Killip and Barry Simon, Sum rules for Jacobi matrices and their applications to spectral theory, Ann. of Math. (2) 158 (2003), no. 1, 253-321. MR 1999923 (2004f:47040), https://doi.org/10.4007/annals.2003.158.253
  • [7] A. Laptev, S. Naboko, and O. Safronov, Absolutely continuous spectrum of Schrödinger operators with slowly decaying and oscillating potentials, Comm. Math. Phys. 253 (2005), no. 3, 611-631. MR 2116730 (2005h:81126), https://doi.org/10.1007/s00220-004-1157-9
  • [8] Galina Perelman, Stability of the absolutely continuous spectrum for multidimensional Schrödinger operators, Int. Math. Res. Not. 37 (2005), 2289-2313. MR 2181266 (2006k:35045), https://doi.org/10.1155/IMRN.2005.2289
  • [9] Oleg Safronov, On the absolutely continuous spectrum of multi-dimensional Schrödinger operators with slowly decaying potentials, Comm. Math. Phys. 254 (2005), no. 2, 361-366. MR 2117630 (2005i:35048), https://doi.org/10.1007/s00220-004-1161-0
  • [10] Oleg Safronov, Multi-dimensional Schrödinger operators with some negative spectrum, J. Funct. Anal. 238 (2006), no. 1, 327-339. MR 2253019 (2007i:35038), https://doi.org/10.1016/j.jfa.2006.01.006
  • [11] Oleg Safronov, Multi-dimensional Schrödinger operators with no negative spectrum, Ann. Henri Poincaré 7 (2006), no. 4, 781-789. MR 2232372 (2007b:81078), https://doi.org/10.1007/s00023-006-0268-6
  • [12] O. Safronov, Absolutely continuous spectrum of one random elliptic operator, J. Funct. Anal. 255 (2008), no. 3, 755-767. MR 2426436 (2009d:47040), https://doi.org/10.1016/j.jfa.2008.04.019
  • [13] O. Safronov, Lower bounds on the eigenvalue sums of the Schrödinger operator and the spectral conservation law, Problems in mathematical analysis. No. 45, J. Math. Sci. (N. Y.) 166 (2010), no. 3, 300-318. MR 2839034 (2012j:35059), https://doi.org/10.1007/s10958-010-9868-2
  • [14] O. Safronov, Absolutely continuous spectrum of a one-parametric family of Schrödinger
    operators
    , Algebra i Analiz 24 (2012), no. 6, 178-196.
  • [15] O. Safronov and B. Vainberg, Estimates for negative eigenvalues of a random Schrödinger operator, Proc. Amer. Math. Soc. 136 (2008), no. 11, 3921-3929. MR 2425732 (2009h:47068), https://doi.org/10.1090/S0002-9939-08-09356-8
  • [16] Barry Simon, Schrödinger operators in the twenty-first century, Mathematical physics 2000, Imp. Coll. Press, London, 2000, pp. 283-288. MR 1773049 (2001g:81071), https://doi.org/10.1142/9781848160224_0014
  • [17] B. R. Vaĭnberg, The analytic properties of the resolvent for a certain class of bundles of operators, Mat. Sb. (N.S.) 77 (119) (1968), 259-296 (Russian). MR 0240447 (39 #1795)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 81U05, 47F05

Retrieve articles in all journals with MSC (2010): 81U05, 47F05


Additional Information

Oleg Safronov
Affiliation: Department of Mathematics and Statistics, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, North Carolina 28223

DOI: https://doi.org/10.1090/S0002-9939-2013-12186-6
Received by editor(s): March 16, 2012
Published electronically: October 11, 2013
Communicated by: James E. Colliander
Article copyright: © Copyright 2013 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society