Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Definable envelopes of nilpotent subgroups of groups with chain conditions on centralizers


Authors: Tuna Altınel and Paul Baginski
Journal: Proc. Amer. Math. Soc. 142 (2014), 1497-1506
MSC (2010): Primary 20F22, 03C60
DOI: https://doi.org/10.1090/S0002-9939-2014-11879-X
Published electronically: February 4, 2014
MathSciNet review: 3168457
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: An $ \mathfrak{M}_C$ group is a group in which all chains of centralizers have finite length. In this article, we show that every nilpotent subgroup of an $ \mathfrak{M}_C$ group is contained in a definable subgroup which is nilpotent of the same nilpotence class. Definitions are uniform when the lengths of chains are bounded.


References [Enhancements On Off] (What's this?)

  • [1] R. de Aldama. Chaînes et dépendance. Ph.D. dissertation, Université Lyon-1, Lyon, France, 2009.
  • [2] V. V. Bludov, On locally nilpotent groups with the minimality condition for centralizers, Algebra i Logika 37 (1998), no. 3, 270-278, 375 (Russian, with Russian summary); English transl., Algebra and Logic 37 (1998), no. 3, 151-156. MR 1673037 (2000a:20080), https://doi.org/10.1007/BF02671585
  • [3] Roger M. Bryant, Groups with the minimal condition on centralizers, J. Algebra 60 (1979), no. 2, 371-383. MR 549936 (81a:20039), https://doi.org/10.1016/0021-8693(79)90089-9
  • [4] Jamshid Derakhshan and Frank O. Wagner, Nilpotency in groups with chain conditions, Quart. J. Math. Oxford Ser. (2) 48 (1997), no. 192, 453-466. MR 1604819 (99b:20047), https://doi.org/10.1093/qmath/48.4.453
  • [5] Clifton Ealy, Krzysztof Krupiński, and Anand Pillay, Superrosy dependent groups having finitely satisfiable generics, Ann. Pure Appl. Logic 151 (2008), no. 1, 1-21. MR 2381504 (2009a:03041), https://doi.org/10.1016/j.apal.2007.09.004
  • [6] Wilfrid Hodges, Model theory, Encyclopedia of Mathematics and its Applications, vol. 42, Cambridge University Press, Cambridge, 1993. MR 1221741 (94e:03002)
  • [7] B. Huppert, Endliche Gruppen. I. (German), Die Grundlehren der Mathematischen Wissenschaften, Band 134, Springer-Verlag, Berlin, 1967. MR 0224703 (37 #302)
  • [8] E. I. Khukhro, On solubility of groups with bounded centralizer chains, Glasg. Math. J. 51 (2009), no. 1, 49-54. MR 2471675 (2009k:20077), https://doi.org/10.1017/S0017089508004527
  • [9] Alexei Myasnikov and Pavel Shumyatsky, Discriminating groups and c-dimension, J. Group Theory 7 (2004), no. 1, 135-142. MR 2030235 (2004k:20069), https://doi.org/10.1515/jgth.2003.039
  • [10] Cédric Milliet, On properties of (weakly) small groups, J. Symbolic Logic 77 (2012), no. 1, 94-110. MR 2951631
  • [11] Bruno Poizat, Cours de théorie des modèles. Une introduction à la logique mathématique contemporaine. [An introduction to contemporary mathematical logic], Bruno Poizat, Lyon, 1985 (French). MR 817208 (87f:03084)
  • [12] Bruno Poizat, Groupes stables. Une tentative de conciliation entre la géométrie algébrique et la logique mathématique. [An attempt at reconciling algebraic geometry and mathematical logic], Nur al-Mantiq wal-Marifah [Light of Logic and Knowledge], 2, Bruno Poizat, Lyon, 1987 (French). MR 902156 (89b:03056)
  • [13] D. J. S. Robinson. A Course in the Theory of Groups. Graduate Texts in Math., 80, Springer-Verlag, New York, 1991. Reprint of 1982 original. MR 0648604 (84k:20001)
  • [14] P. Uğurlu. Simple groups of finite Morley rank with tight automorphism whose centralizer is pseudofinite. Ph.D. dissertation, Middle East Technical University, Ankara, Turkey, 2009.
  • [15] Frank O. Wagner, Stable groups, London Mathematical Society Lecture Note Series, vol. 240, Cambridge University Press, Cambridge, 1997. MR 1473226 (99g:20010)
  • [16] Frank O. Wagner, Nilpotency in groups with the minimal condition on centralizers, J. Algebra 217 (1999), no. 2, 448-460. MR 1700510 (2000e:20051), https://doi.org/10.1006/jabr.1998.7824

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 20F22, 03C60

Retrieve articles in all journals with MSC (2010): 20F22, 03C60


Additional Information

Tuna Altınel
Affiliation: Université de Lyon, CNRS UMR 5208, Université Lyon 1, Institut Camille Jordan, 43 blvd. du 11 novembre 1918, F-69622 Villeurbanne cedex, France
Email: altinel@math.univ-lyon1.fr

Paul Baginski
Affiliation: Institut Camille Jordan, Université Claude Bernard Lyon 1, Lyon, France 69622
Address at time of publication: Department of Mathematics, Fairfield University, 1073 North Benson Road, Fairfield, Connecticut 06824
Email: pbaginski@fairfield.edu

DOI: https://doi.org/10.1090/S0002-9939-2014-11879-X
Keywords: Group theory, nilpotence, chains of centralizers, model theory, definability
Received by editor(s): October 17, 2011
Received by editor(s) in revised form: March 26, 2012, and May 29, 2012
Published electronically: February 4, 2014
Communicated by: Julia Knight
Article copyright: © Copyright 2014 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society