Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

Request Permissions   Purchase Content 
 
 

 

Strong analytic solutions of fractional Cauchy problems


Authors: Jebessa B. Mijena and Erkan Nane
Journal: Proc. Amer. Math. Soc. 142 (2014), 1717-1731
MSC (2010): Primary 35R11, 35C15, 35S05; Secondary 47G30, 60K99
DOI: https://doi.org/10.1090/S0002-9939-2014-11905-8
Published electronically: February 19, 2014
MathSciNet review: 3168478
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Fractional derivatives can be used to model time delays in a diffusion process. When the order of the fractional derivative is distributed over the unit interval, it is useful for modeling a mixture of delay sources. In some special cases a distributed order derivative can be used to model ultra-slow diffusion. We extend the results of Baeumer and Meerschaert in the single order fractional derivative case to the distributed order fractional derivative case. In particular, we develop strong analytic solutions of distributed order fractional Cauchy problems.


References [Enhancements On Off] (What's this?)

  • [1] Wolfgang Arendt, Charles J. K. Batty, Matthias Hieber, and Frank Neubrander, Vector-valued Laplace transforms and Cauchy problems, Monographs in Mathematics, vol. 96, Birkhäuser Verlag, Basel, 2001. MR 1886588 (2003g:47072)
  • [2] Boris Baeumer, On the inversion of the convolution and Laplace transform, Trans. Amer. Math. Soc. 355 (2003), no. 3, 1201-1212 (electronic). MR 1938753 (2003m:44002), https://doi.org/10.1090/S0002-9947-02-03174-4
  • [3] Boris Baeumer and Mark M. Meerschaert, Stochastic solutions for fractional Cauchy problems, Fract. Calc. Appl. Anal. 4 (2001), no. 4, 481-500. MR 1874479 (2003d:26006)
  • [4] Boris Baeumer and Mark M. Meerschaert, Tempered stable Lévy motion and transient super-diffusion, J. Comput. Appl. Math. 233 (2010), no. 10, 2438-2448. MR 2577834 (2010m:60285), https://doi.org/10.1016/j.cam.2009.10.027
  • [5] Martin T. Barlow and Jiří Černý, Convergence to fractional kinetics for random walks associated with unbounded conductances, Probab. Theory Related Fields 149 (2011), no. 3-4, 639-673. MR 2776627 (2012d:60091), https://doi.org/10.1007/s00440-009-0257-z
  • [6] Emilia G. Bazhlekova, Subordination principle for fractional evolution equations, Fract. Calc. Appl. Anal. 3 (2000), no. 3, 213-230. MR 1788162 (2001h:34088)
  • [7] D. A. Benson, S. W. Wheatcraft and M. M. Meerschaert, Application of a fractional advection-dispersion equation, Water Resour. Res. 36(6) (2000), 1403-1412.
  • [8] M. Caputo, Linear models of dissipation whose Q is almost frequency independent, Part II. Geophys. J. R. Astr. Soc. 13 (1967), 529-539.
  • [9] A. V. Chechkin, R. Gorenfo, and I. M. Sokolov, Retarding subdiffusion and accelerating superdiffusion governed by distributed order fractional diffusion equations, Phys. Rev. E 66 (2002), 1-7.
  • [10] A. Einstein, On the theory of the Brownian movement, Annalen der Physik 4 (1906), 171-180.
  • [11] Rudolf Gorenflo, Francesco Mainardi, Enrico Scalas, and Marco Raberto, Fractional calculus and continuous-time finance. III. The diffusion limit, Mathematical finance (Konstanz, 2000) Trends Math., Birkhäuser, Basel, 2001, pp. 171-180. MR 1882830
  • [12] M. G. Hahn, K. Kobayashi, and S. Umarov, SDEs driven by a time-changed Lévy process and
    their associated time-fractional order pseudo-differential equations
    , J. Theoret. Probab. 25 (2012), no. 1, 262-279, DOI: 10.1007/s10959-010-0289-4 MR 2886388
  • [13] Einar Hille and Ralph S. Phillips, Functional analysis and semi-groups, American Mathematical Society Colloquium Publications, vol. 31, American Mathematical Society, Providence, R.I., 1957. rev. ed. MR 0089373 (19,664d)
  • [14] Anatoly N. Kochubei, Distributed order calculus and equations of ultraslow diffusion, J. Math. Anal. Appl. 340 (2008), 252-281. MR 2376152 (2009i:35177), https://doi.org/10.1016/j.jmaa.2007.08.024
  • [15] Yury Luchko, Boundary value problems for the generalized time-fractional diffusion equation of distributed order, Fract. Calc. Appl. Anal. 12 (2009), no. 4, 409-422. MR 2598188 (2011c:35601)
  • [16] Francesco Mainardi, Antonio Mura, Gianni Pagnini, and Rudolf Gorenflo, Time-fractional diffusion of distributed order, J. Vib. Control 14 (2008), no. 9-10, 1267-1290. MR 2463064 (2009j:35184), https://doi.org/10.1177/1077546307087452
  • [17] Francesco Mainardi, Antonio Mura, Rudolf Gorenflo, and Mirjana Stojanović, The two forms of fractional relaxation of distributed order, J. Vib. Control 13 (2007), no. 9-10, 1249-1268. MR 2356714 (2008g:34127), https://doi.org/10.1177/1077546307077468
  • [18] Francesco Mainardi, Gianni Pagnini, and Rudolf Gorenflo, Some aspects of fractional diffusion equations of single and distributed order, Appl. Math. Comput. 187 (2007), no. 1, 295-305. MR 2323582, https://doi.org/10.1016/j.amc.2006.08.126
  • [19] Mark M. Meerschaert, David A. Benson, Hans-Peter Scheffler, and Boris Baeumer, Stochastic solution of space-time fractional diffusion equations, Phys. Rev. E (3) 65 (2002), no. 4, 041103, 4 pp.. MR 1917983 (2003d:60165), https://doi.org/10.1103/PhysRevE.65.041103
  • [20] Mark M. Meerschaert and Hans-Peter Scheffler, Limit theorems for continuous-time random walks with infinite mean waiting times, J. Appl. Probab. 41 (2004), no. 3, 623-638. MR 2074812 (2005f:60105)
  • [21] Mark M. Meerschaert and Hans-Peter Scheffler, Stochastic model for ultraslow diffusion, Stochastic Process. Appl. 116 (2006), no. 9, 1215-1235. MR 2251542 (2008g:60136), https://doi.org/10.1016/j.spa.2006.01.006
  • [22] Mark M. Meerschaert and Hans-Peter Scheffler, Triangular array limits for continuous time random walks, Stochastic Process. Appl. 118 (2008), no. 9, 1606-1633. MR 2442372 (2010b:60135), https://doi.org/10.1016/j.spa.2007.10.005
  • [23] Mark M. Meerschaert, Erkan Nane, and P. Vellaisamy, Fractional Cauchy problems on bounded domains, Ann. Probab. 37 (2009), no. 3, 979-1007. MR 2537547 (2010h:60121), https://doi.org/10.1214/08-AOP426
  • [24] Mark M. Meerschaert, Erkan Nane, and P. Vellaisamy, Distributed-order fractional diffusions on bounded domains, J. Math. Anal. Appl. 379 (2011), no. 1, 216-228. MR 2776466 (2012e:35263), https://doi.org/10.1016/j.jmaa.2010.12.056
  • [25] M. M. Meerschaert, E. Nane, and P. Vellaisamy, Transient anomalous sub-diffusion on bounded domains, Proc. Amer. Math. Soc. 141 (2013), no. 2, 699-710. MR 2996975
  • [26] Ralf Metzler and Joseph Klafter, The random walk's guide to anomalous diffusion: a fractional dynamics approach, Phys. Rep. 339 (2000), no. 1, 77. MR 1809268 (2001k:82082), https://doi.org/10.1016/S0370-1573(00)00070-3
  • [27] Mark Naber, Distributed order fractional sub-diffusion, Fractals 12 (2004), no. 1, 23-32. MR 2052734 (2005c:60105), https://doi.org/10.1142/S0218348X04002410
  • [28] A. Pazy, Semigroups of linear operators and applications to partial differential equations, Applied Mathematical Sciences, vol. 44, Springer-Verlag, New York, 1983. MR 710486 (85g:47061)
  • [29] Jan Prüss, Evolutionary integral equations and applications, Modern Birkhäuser Classics, Birkhäuser/Springer Basel AG, Basel, 1993. [2012] reprint of the 1993 edition. MR 2964432
  • [30] M. J. Saxton and K. Jacobson, Single-particle tracking: application to membrane dynamics, Annu. Rev. Biophys. Biomol. Struct. 26 (1997), 373-399.
  • [31] Ya. G. Sinaĭ, The limit behavior of a one-dimensional random walk in a random environment, Teor. Veroyatnost. i Primenen. 27 (1982), no. 2, 247-258 (Russian, with English summary). MR 657919 (83k:60078)
  • [32] G. M. Zaslavsky, Chaos, fractional kinetics, and anomalous transport, Phys. Rep. 371 (2002), no. 6, 461-580. MR 1937584 (2003i:70030), https://doi.org/10.1016/S0370-1573(02)00331-9

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 35R11, 35C15, 35S05, 47G30, 60K99

Retrieve articles in all journals with MSC (2010): 35R11, 35C15, 35S05, 47G30, 60K99


Additional Information

Jebessa B. Mijena
Affiliation: Department of Mathematics and Statistics, 221 Parker Hall, Auburn University, Auburn, Alabama 36849
Address at time of publication: Department of Mathematics, Georgia College and State University, 231 W. Hancock Street, Campus Box 17, Milledgeville, Georgia 31061
Email: jebessa.mijena@gcsu.edu

Erkan Nane
Affiliation: Department of Mathematics and Statistics, 221 Parker Hall, Auburn University, Auburn, Alabama 36849
Email: nane@auburn.edu

DOI: https://doi.org/10.1090/S0002-9939-2014-11905-8
Keywords: Distributed order Cauchy problems, Caputo fractional derivative, Riemann-Liouville fractional derivative, strongly analytic solution
Received by editor(s): October 18, 2011
Received by editor(s) in revised form: June 22, 2012
Published electronically: February 19, 2014
Communicated by: Mark M. Meerschaert
Article copyright: © Copyright 2014 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society