Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The possible extremal Betti numbers of a homogeneous ideal


Authors: Jürgen Herzog, Leila Sharifan and Matteo Varbaro
Journal: Proc. Amer. Math. Soc. 142 (2014), 1875-1891
MSC (2010): Primary 13D02
DOI: https://doi.org/10.1090/S0002-9939-2014-11920-4
Published electronically: February 27, 2014
MathSciNet review: 3182008
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We give a numerical characterization of the possible extremal Betti numbers (values as well as positions) of any homogeneous ideal in a polynomial ring over a field of characteristic 0.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 13D02

Retrieve articles in all journals with MSC (2010): 13D02


Additional Information

Jürgen Herzog
Affiliation: Fachbereich Mathematik, Universität Duisburg-Essen, Campus Essen, 45117 Essen, Germany
Email: juergen.herzog@uni-essen.de

Leila Sharifan
Affiliation: Department of Mathematics, Hakim Sabzevari University, Sabzevar, Iran
Email: leila-sharifan@aut.ac.ir

Matteo Varbaro
Affiliation: Dipartimento di Matematica, Università degli Studi di Genova, Genova, Italy
Email: varbaro@dima.unige.it

DOI: https://doi.org/10.1090/S0002-9939-2014-11920-4
Keywords: Betti tables, componentwise linear ideals, extremal Betti numbers, strongly stable monomial ideals
Received by editor(s): December 24, 2011
Received by editor(s) in revised form: May 26, 2012, and July 2, 2012
Published electronically: February 27, 2014
Communicated by: Irena Peeva
Article copyright: © Copyright 2014 American Mathematical Society

American Mathematical Society