Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Asymmetric $ L_p$-difference bodies


Authors: Weidong Wang and Tongyi Ma
Journal: Proc. Amer. Math. Soc. 142 (2014), 2517-2527
MSC (2010): Primary 52A40, 52A20
DOI: https://doi.org/10.1090/S0002-9939-2014-11919-8
Published electronically: March 27, 2014
MathSciNet review: 3195772
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Lutwak introduced the $ L_p$-difference body of a convex body as the Firey $ L_p$-combination of the body and its reflection at the origin. In this paper, we define the notion of asymmetric $ L_p$-difference bodies and study some of their properties. In particular, we determine the extremal values of the volumes of asymmetric $ L_p$-difference bodies and their polars, respectively.


References [Enhancements On Off] (What's this?)

  • [1] Judit Abardia and Andreas Bernig, Projection bodies in complex vector spaces, Adv. Math. 227 (2011), no. 2, 830-846. MR 2793024 (2012e:52025), https://doi.org/10.1016/j.aim.2011.02.013
  • [2] Semyon Alesker, Andreas Bernig, and Franz E. Schuster, Harmonic analysis of translation invariant valuations, Geom. Funct. Anal. 21 (2011), no. 4, 751-773. MR 2827009 (2012h:52020), https://doi.org/10.1007/s00039-011-0125-8
  • [3] Chiara Bianchini and Andrea Colesanti, A sharp Rogers and Shephard inequality for the $ p$-difference body of planar convex bodies, Proc. Amer. Math. Soc. 136 (2008), no. 7, 2575-2582. MR 2390529 (2009d:52011), https://doi.org/10.1090/S0002-9939-08-09209-5
  • [4] William J. Firey, Mean cross-section measures of harmonic means of convex bodies, Pacific J. Math. 11 (1961), 1263-1266. MR 0140003 (25 #3427)
  • [5] Wm. J. Firey, $ p$-means of convex bodies, Math. Scand. 10 (1962), 17-24. MR 0141003 (25 #4416)
  • [6] Richard J. Gardner, Geometric tomography, 2nd ed., Encyclopedia of Mathematics and its Applications, vol. 58, Cambridge University Press, Cambridge, 2006. MR 2251886 (2007i:52010)
  • [7] C. Haberl, Minkowski valuations intertwining with the special linear group. J. Eur. Math. Soc. (JEMS) 14 (2012), no. 5, 1565-1597. MR 2966660
  • [8] Christoph Haberl and Franz E. Schuster, General $ L_p$ affine isoperimetric inequalities , J. Differential Geom. 83 (2009), no. 1, 1-26. MR 2545028 (2010j:52026)
  • [9] Christoph Haberl and Franz E. Schuster, Asymmetric affine $ L_p$ Sobolev inequalities, J. Funct. Anal. 257 (2009), no. 3, 641-658. MR 2530600 (2010j:46068), https://doi.org/10.1016/j.jfa.2009.04.009
  • [10] Christoph Haberl, Franz E. Schuster, and Jie Xiao, An asymmetric affine Pólya-Szegö principle, Math. Ann. 352 (2012), no. 3, 517-542. MR 2885586, https://doi.org/10.1007/s00208-011-0640-9
  • [11] Monika Ludwig, Minkowski valuations, Trans. Amer. Math. Soc. 357 (2005), no. 10, 4191-4213 (electronic). MR 2159706 (2006f:52005), https://doi.org/10.1090/S0002-9947-04-03666-9
  • [12] Monika Ludwig, Valuations in the affine geometry of convex bodies, Integral geometry and convexity, World Sci. Publ., Hackensack, NJ, 2006, pp. 49-65. MR 2240973 (2007f:52033), https://doi.org/10.1142/9789812774644_0005
  • [13] Monika Ludwig, Minkowski areas and valuations, J. Differential Geom. 86 (2010), no. 1, 133-161. MR 2772547 (2012a:52009)
  • [14] Erwin Lutwak, On some affine isoperimetric inequalities, J. Differential Geom. 23 (1986), no. 1, 1-13. MR 840399 (87k:52030)
  • [15] Erwin Lutwak, The Brunn-Minkowski-Firey theory. I. Mixed volumes and the Minkowski problem, J. Differential Geom. 38 (1993), no. 1, 131-150. MR 1231704 (94g:52008)
  • [16] Erwin Lutwak, The Brunn-Minkowski-Firey theory. II. Affine and geominimal surface areas, Adv. Math. 118 (1996), no. 2, 244-294. MR 1378681 (97f:52014), https://doi.org/10.1006/aima.1996.0022
  • [17] Erwin Lutwak, Deane Yang, and Gaoyong Zhang, $ L_p$ affine isoperimetric inequalities , J. Differential Geom. 56 (2000), no. 1, 111-132. MR 1863023 (2002h:52011)
  • [18] Erwin Lutwak, Deane Yang, and Gaoyong Zhang, Orlicz projection bodies, Adv. Math. 223 (2010), no. 1, 220-242. MR 2563216 (2011g:28008), https://doi.org/10.1016/j.aim.2009.08.002
  • [19] Erwin Lutwak, Deane Yang, and Gaoyong Zhang, Orlicz centroid bodies, J. Differential Geom. 84 (2010), no. 2, 365-387. MR 2652465 (2011g:52017)
  • [20] C. A. Rogers and G. C. Shephard, The difference body of a convex body, Arch. Math. (Basel) 8 (1957), 220-233. MR 0092172 (19,1073f)
  • [21] Franz E. Schuster, Convolutions and multiplier transformations of convex bodies, Trans. Amer. Math. Soc. 359 (2007), no. 11, 5567-5591. MR 2327043 (2009e:52008), https://doi.org/10.1090/S0002-9947-07-04270-5
  • [22] Franz E. Schuster, Crofton measures and Minkowski valuations, Duke Math. J. 154 (2010), no. 1, 1-30. MR 2668553 (2011g:52026), https://doi.org/10.1215/00127094-2010-033
  • [23] Rolf Schneider, Convex bodies: the Brunn-Minkowski theory, Encyclopedia of Mathematics and its Applications, vol. 44, Cambridge University Press, Cambridge, 1993. MR 1216521 (94d:52007)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 52A40, 52A20

Retrieve articles in all journals with MSC (2010): 52A40, 52A20


Additional Information

Weidong Wang
Affiliation: Department of Mathematics, China Three Gorges University, Yichang, 443002, People’s Republic of China
Email: wdwxh722@163.com

Tongyi Ma
Affiliation: Department of Mathematics, Hexi University, Gansu Zhangye, 734000, People’s Republic of China
Email: gsmatongyi@hotmail.com

DOI: https://doi.org/10.1090/S0002-9939-2014-11919-8
Keywords: Asymmetric $L_p$-difference body, Firey $L_p$-combination, extremum
Received by editor(s): April 4, 2011
Received by editor(s) in revised form: August 1, 2011, and July 2, 2012
Published electronically: March 27, 2014
Additional Notes: The authors’ research was supported in part by the Natural Science Foundation of China (grants No. 11371224, 11161019) and Science Foundation of China Three Gorges University
Communicated by: Michael Wolf
Article copyright: © Copyright 2014 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society