-minimal submanifolds
Author:
Nikolaos I. Katzourakis
Journal:
Proc. Amer. Math. Soc. 142 (2014), 2797-2811
MSC (2010):
Primary 35J47, 35J62, 53C24; Secondary 49J99
DOI:
https://doi.org/10.1090/S0002-9939-2014-12039-9
Published electronically:
May 5, 2014
MathSciNet review:
3209334
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: We identify the Variational Principle governing -Harmonic maps
, that is, solutions to the
-Laplacian
System (1) was first derived in the limit of the



We introduce the notion of







- [A1]
Gunnar Aronsson, Minimization problems for the functional
, Ark. Mat. 6 (1965), 33-53 (1965). MR 0196551 (33 #4738)
- [A2]
Gunnar Aronsson, Minimization problems for the functional
. II, Ark. Mat. 6 (1966), 409-431 (1966). MR 0203541 (34 #3391)
- [A3] Gunnar Aronsson, Extension of functions satisfying Lipschitz conditions, Ark. Mat. 6 (1967), 551-561 (1967). MR 0217665 (36 #754)
- [A4]
Gunnar Aronsson, On the partial differential equation
, Ark. Mat. 7 (1968), 395-425 (1968). MR 0237962 (38 #6239)
- [A5]
Gunnar Aronsson, Minimization problems for the functional
. III, Ark. Mat. 7 (1969), 509-512 (1969). MR 0240690 (39 #2035)
- [BEJ] E. N. Barron, L. C. Evans, and R. Jensen, The infinity Laplacian, Aronsson's equation and their generalizations, Trans. Amer. Math. Soc. 360 (2008), no. 1, 77-101. MR 2341994 (2010j:35162), https://doi.org/10.1090/S0002-9947-07-04338-3
- [CR] Luca Capogna and Andrew Raich, An Aronsson type approach to extremal quasiconformal mappings, J. Differential Equations 253 (2012), no. 3, 851-877. MR 2922655, https://doi.org/10.1016/j.jde.2012.04.015
- [C]
M. G. Crandall, A visit with the
-Laplacian, in Calculus of Variations and Non-Linear Partial Differential Equations, Springer Lecture Notes in Mathematics, Springer, Berlin, 2008.MR 2408259 (2009m:35129)
- [K1] Nikolaos I. Katzourakis, Explicit singular viscosity solutions of the Aronsson equation, C. R. Math. Acad. Sci. Paris 349 (2011), no. 21-22, 1173-1176 (English, with English and French summaries). MR 2855498 (2012j:35099), https://doi.org/10.1016/j.crma.2011.10.010
- [K2]
Nikolaos I. Katzourakis,
variational problems for maps and the Aronsson PDE system, J. Differential Equations 253 (2012), no. 7, 2123-2139. MR 2946966, https://doi.org/10.1016/j.jde.2012.05.012
- [K3]
N. I. Katzourakis, On the structure of
-harmonic maps, preprint, 2012.
- [K4]
N. I. Katzourakis, Extremal
-quasiconformal immersions, preprint, 2012.
- [K5] N. I. Katzourakis, Contact solutions for nonlinear systems of partial Differential equations, manuscript in preparation, 2012.
- [OTW] Ye-Lin Ou, Tiffany Troutman, and Frederick Wilhelm, Infinity-harmonic maps and morphisms, Differential Geom. Appl. 30 (2012), no. 2, 164-178. MR 2913071, https://doi.org/10.1016/j.difgeo.2011.11.011
- [SS] Scott Sheffield and Charles K. Smart, Vector-valued optimal Lipschitz extensions, Comm. Pure Appl. Math. 65 (2012), no. 1, 128-154. MR 2846639, https://doi.org/10.1002/cpa.20391
- [WO] Ze-Ping Wang and Ye-Lin Ou, Classifications of some special infinity-harmonic maps, Balkan J. Geom. Appl. 14 (2009), no. 1, 120-131. MR 2539666 (2011a:53124)
Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 35J47, 35J62, 53C24, 49J99
Retrieve articles in all journals with MSC (2010): 35J47, 35J62, 53C24, 49J99
Additional Information
Nikolaos I. Katzourakis
Affiliation:
Basque Center for Applied Mathematics (BCAM), Alameda de Mazarredo 14, E-48009, Bilbao, Spain
Address at time of publication:
Department of Mathematics and Statistics, University of Reading, Whiteknights P. O. Box 220, Reading RG6 6AX, United Kingdom
Email:
n.katzourakis@reading.ac.uk
DOI:
https://doi.org/10.1090/S0002-9939-2014-12039-9
Keywords:
$\infty$-Harmonic maps,
vector-valued calculus of variations in $L^\infty$,
vector-valued optimal Lipschitz extensions,
quasi-conformal maps,
Aronsson PDE,
rigidity.
Received by editor(s):
June 4, 2012
Received by editor(s) in revised form:
September 7, 2012
Published electronically:
May 5, 2014
Communicated by:
Chuu-Lian Terng
Article copyright:
© Copyright 2014
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.