Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

Request Permissions   Purchase Content 


The sublinear problem for the $ 1$-homogeneous $ p$-Laplacian

Authors: Pedro J. Martínez-Aparicio, Mayte Pérez-Llanos and Julio D. Rossi
Journal: Proc. Amer. Math. Soc. 142 (2014), 2641-2648
MSC (2010): Primary 35A02, 35B51, 35J60
Published electronically: April 21, 2014
MathSciNet review: 3209320
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we prove the existence and uniqueness of a positive viscosity solution of the $ 1$-homogeneous $ p$-Laplacian with a sublinear right-hand side; that is, $ -\vert D u\vert^{2-p}{\rm div}\:(\vert D u\vert^{p-2}Du)=\lambda u^q$ in $ \Omega $, $ u=0$ on $ \partial \Omega $, where $ \Omega $ is a bounded starshaped domain, $ \lambda >0$, $ p>2$ and $ 0<q<1$.

References [Enhancements On Off] (What's this?)

  • [1] Tomasz Adamowicz and Peter Hästö, Harnack's inequality and the strong $ p(\cdot )$-Laplacian, J. Differential Equations 250 (2011), no. 3, 1631-1649. MR 2737220 (2011m:35089),
  • [2] Tomasz Adamowicz and Peter Hästö, Mappings of finite distortion and PDE with nonstandard growth, Int. Math. Res. Not. IMRN 10 (2010), 1940-1965. MR 2646346 (2011h:30035),
  • [3] Gunnar Aronsson, Michael G. Crandall, and Petri Juutinen, A tour of the theory of absolutely minimizing functions, Bull. Amer. Math. Soc. (N.S.) 41 (2004), no. 4, 439-505. MR 2083637 (2005k:35159),
  • [4] Haïm Brezis and Luc Oswald, Remarks on sublinear elliptic equations, Nonlinear Anal. 10 (1986), no. 1, 55-64. MR 820658 (87c:35057),
  • [5] Luis A. Caffarelli and Xavier Cabré, Fully nonlinear elliptic equations, American Mathematical Society Colloquium Publications, vol. 43, American Mathematical Society, Providence, RI, 1995. MR 1351007 (96h:35046)
  • [6] F. Charro, G. De Philippis, A. Di Castro, and D. Maximo, On the Aleksandrov-Bakelman-Pucci estimate for the infinity Laplacian, Calc. Var. PDE 48 (2013), no. 3-4, 667-693. MR 3116027
  • [7] Michael G. Crandall, Hitoshi Ishii, and Pierre-Louis Lions, User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. (N.S.) 27 (1992), no. 1, 1-67. MR 1118699 (92j:35050),
  • [8] Kin Ming Hui, Comparison theorems for the eigenvalues of the Laplacian in the unit ball in $ \mathbf {R}^n$, Canad. Math. Bull. 35 (1992), no. 2, 214-217. MR 1165170 (93e:35078),
  • [9] Petri Juutinen, Principal eigenvalue of a very badly degenerate operator and applications, J. Differential Equations 236 (2007), no. 2, 532-550. MR 2322023 (2008h:35092),
  • [10] P. Juutinen, Minimization problems for Lipschitz functions via viscosity solutions, Ann. Acad. Sci. Fenn. Math. Diss. No. 115 (1998), 53 pp.MR 1632063 (2000a:49055)
  • [11] Petri Juutinen, Peter Lindqvist, and Juan J. Manfredi, On the equivalence of viscosity solutions and weak solutions for a quasi-linear equation, SIAM J. Math. Anal. 33 (2001), no. 3, 699-717 (electronic). MR 1871417 (2002m:35051),
  • [12] Ashok P. Maitra and William D. Sudderth, Discrete gambling and stochastic games, Applications of Mathematics (New York), vol. 32, Springer-Verlag, New York, 1996. MR 1382657 (99c:60091)
  • [13] Juan J. Manfredi, Mikko Parviainen, and Julio D. Rossi, An asymptotic mean value characterization for $ p$-harmonic functions, Proc. Amer. Math. Soc. 138 (2010), no. 3, 881-889. MR 2566554 (2010k:35200),
  • [14] J. J. Manfredi, M. Parviainen, and J. D. Rossi, On the definition and properties of
    $ p$-harmonious functions
    , Ann. Scuola Normale Sup. Pisa. Cl. Sci. (5) XI(2) (2012), 215-241.MR 3011990
  • [15] Guozhen Lu and Peiyong Wang, A PDE perspective of the normalized infinity Laplacian, Comm. Partial Differential Equations 33 (2008), no. 10-12, 1788-1817. MR 2475319 (2009m:35150),
  • [16] Yuval Peres, Oded Schramm, Scott Sheffield, and David B. Wilson, Tug-of-war and the infinity Laplacian, J. Amer. Math. Soc. 22 (2009), no. 1, 167-210. MR 2449057 (2009h:91004),
  • [17] Yuval Peres and Scott Sheffield, Tug-of-war with noise: a game-theoretic view of the $ p$-Laplacian, Duke Math. J. 145 (2008), no. 1, 91-120. MR 2451291 (2010i:35100),

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 35A02, 35B51, 35J60

Retrieve articles in all journals with MSC (2010): 35A02, 35B51, 35J60

Additional Information

Pedro J. Martínez-Aparicio
Affiliation: Departamento de Matemática Aplicada y Estadística, Universidad Politécnica de Cartagena, 30202, Murcia, Spain

Mayte Pérez-Llanos
Affiliation: Departamento de Matemáticas, Campus de Cantoblanco, Universidad Autonoma de Madrid, 28049, Madrid, Spain

Julio D. Rossi
Affiliation: Departamento de Análisis Matemático, Universidad de Alicante, Ap. correos 99, 03080 Alicante, Spain (on leave from Departamento de Matemática, FCEyN UBA, Ciudad Universitaria, Pab 1 (1428), Buenos Aires, Argentina)

Keywords: Infinity-Laplacian, $1$-homogeneous $p$-Laplacian
Received by editor(s): September 23, 2011
Published electronically: April 21, 2014
Additional Notes: The first author was supported by MICINN Ministerio de Ciencia e Innovacion (Spain) MTM2009-10878 and Junta de Andalucia FQM-116
The second and third authors were supported by project MTM2010-18128 (Spain)
Communicated by: James E. Colliander
Article copyright: © Copyright 2014 American Mathematical Society

American Mathematical Society