Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Special $ L$-values and periods of weakly holomorphic modular forms


Authors: Kathrin Bringmann, Karl-Heinz Fricke and Zachary A. Kent
Journal: Proc. Amer. Math. Soc. 142 (2014), 3425-3439
MSC (2010): Primary 11F03, 11F11, 11F30, 11F37, 11F67
DOI: https://doi.org/10.1090/S0002-9939-2014-12092-2
Published electronically: June 27, 2014
MathSciNet review: 3238419
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we explore a method for associating $ L$-series to weakly holomorphic modular forms and then proceed to study their $ L$-values. As our main application, we prove a very curious limiting theorem which relates three ``periods'' of a mock modular form and its shadow to the ratio of their noncritical $ L$-values. Critical $ L$-values are then shown to fit nicely within the framework of period polynomials and an extended Eichler-Shimura theory recently studied by Guerzhoy, Ono, and the first and third authors.


References [Enhancements On Off] (What's this?)

  • [1] Spencer Bloch and Kazuya Kato, $ L$-functions and Tamagawa numbers of motives, The Grothendieck Festschrift, Vol. I, Progr. Math., vol. 86, Birkhäuser Boston, Boston, MA, 1990, pp. 333-400. MR 1086888 (92g:11063)
  • [2] Kathrin Bringmann, Pavel Guerzhoy, Zachary Kent, and Ken Ono, Eichler-Shimura theory for mock modular forms, Math. Ann. 355 (2013), no. 3, 1085-1121. MR 3020155, https://doi.org/10.1007/s00208-012-0816-y
  • [3] Jan Hendrik Bruinier and Jens Funke, On two geometric theta lifts, Duke Math. J. 125 (2004), no. 1, 45-90. MR 2097357 (2005m:11089), https://doi.org/10.1215/S0012-7094-04-12513-8
  • [4] Jan H. Bruinier, Ken Ono, and Robert C. Rhoades, Differential operators for harmonic weak Maass forms and the vanishing of Hecke eigenvalues, Math. Ann. 342 (2008), no. 3, 673-693. MR 2430995 (2009f:11046), https://doi.org/10.1007/s00208-008-0252-1
  • [5] Daniel Bump, Solomon Friedberg, and Jeffrey Hoffstein, Nonvanishing theorems for $ L$-functions of modular forms and their derivatives, Invent. Math. 102 (1990), no. 3, 543-618. MR 1074487 (92a:11058), https://doi.org/10.1007/BF01233440
  • [6] P. Deligne, Valeurs de fonctions $ L$ et périodes d'intégrales, with an appendix by N. Koblitz and A. Ogus, Automorphic forms, representations and $ L$-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 2, Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 313-346 (French). MR 546622 (81d:12009)
  • [7] Benedict H. Gross and Don B. Zagier, Heegner points and derivatives of $ L$-series, Invent. Math. 84 (1986), no. 2, 225-320. MR 833192 (87j:11057), https://doi.org/10.1007/BF01388809
  • [8] P. Guerzhoy, Hecke operators for weakly holomorphic modular forms and supersingular congruences, Proc. Amer. Math. Soc. 136 (2008), no. 9, 3051-3059. MR 2407067 (2009e:11089), https://doi.org/10.1090/S0002-9939-08-09277-0
  • [9] Pavel Guerzhoy, Zachary A. Kent, and Ken Ono, $ p$-adic coupling of mock modular forms and shadows, Proc. Natl. Acad. Sci. USA 107 (2010), no. 14, 6169-6174. MR 2630103 (2011h:11048), https://doi.org/10.1073/pnas.1001355107
  • [10] Henryk Iwaniec, On the order of vanishing of modular $ L$-functions at the critical point, Sém. Théor. Nombres Bordeaux (2) 2 (1990), no. 2, 365-376. MR 1081731 (92h:11040)
  • [11] N. I. Koblic, Non-integrality of the periods of cusp forms outside the critical strip, Funkcional. Anal. i Priložen. 9 (1975), no. 3, 52-55 (Russian). MR 0404144 (53 #7948)
  • [12] W. Kohnen and D. Zagier, Modular forms with rational periods, Modular forms (Durham, 1983) Ellis Horwood Ser. Math. Appl.: Statist. Oper. Res., Horwood, Chichester, 1984, pp. 197-249. MR 803368 (87h:11043)
  • [13] W. Kohnen and D. Zagier, Values of $ L$-series of modular forms at the center of the critical strip, Invent. Math. 64 (1981), no. 2, 175-198. MR 629468 (83b:10029), https://doi.org/10.1007/BF01389166
  • [14] V. A. Kolyvagin, Finiteness of $ E({\bf Q})$ and SH $ (E,{\bf Q})$ for a subclass of Weil curves, Izv. Akad. Nauk SSSR Ser. Mat. 52 (1988), no. 3, 522-540, 670-671 (Russian); English transl., Math. USSR-Izv. 32 (1989), no. 3, 523-541. MR 954295 (89m:11056)
  • [15] Maxim Kontsevich and Don Zagier, Periods, Mathematics unlimited--2001 and beyond, Springer, Berlin, 2001, pp. 771-808. MR 1852188 (2002i:11002)
  • [16] Ju. I. Manin, Periods of cusp forms, and $ p$-adic Hecke series, Mat. Sb. (N.S.) 92(134) (1973), 378-401, 503 (Russian). MR 0345909 (49 #10638)
  • [17] Digital Library of Mathematical Functions, National Institute of Standards and Technology, from http://dlmf.nist.gov/, 2011.
  • [18] Ken Ono, Unearthing the visions of a master: harmonic Maass forms and number theory, Current developments in mathematics, 2008, Int. Press, Somerville, MA, 2009, pp. 347-454. MR 2555930 (2010m:11060)
  • [19] Ken Ono and Christopher Skinner, Fourier coefficients of half-integral weight modular forms modulo $ l$, Ann. of Math. (2) 147 (1998), no. 2, 453-470. MR 1626761 (99f:11059a), https://doi.org/10.2307/121015
  • [20] Ken Ono and Christopher Skinner, Non-vanishing of quadratic twists of modular $ L$-functions, Invent. Math. 134 (1998), no. 3, 651-660. MR 1660945 (2000a:11077), https://doi.org/10.1007/s002220050275
  • [21] Norbert Schappacher and Anthony J. Scholl, Beĭlinson's theorem on modular curves, Beĭlinson's conjectures on special values of $ L$-functions, Perspect. Math., vol. 4, Academic Press, Boston, MA, 1988, pp. 273-304. MR 944997 (89h:11029)
  • [22] D. Zagier, Ramanujan's mock theta functions and their applications (after Zwegers and Ono-Bringmann), Sém. Bourbaki, 60éme année, Vol. 2007/2008, Astérisque No. 326 (2009), Exp. No. 986, 143-164. MR 2605321
  • [23] S. P. Zwegers, Mock $ \theta $-functions and real analytic modular forms, $ q$-series with applications to combinatorics, number theory, and physics (Urbana, IL, 2000) Contemp. Math., vol. 291, Amer. Math. Soc., Providence, RI, 2001, pp. 269-277. MR 1874536 (2003f:11061), https://doi.org/10.1090/conm/291/04907
  • [24] S. Zwegers, Mock theta functions, Ph.D. Thesis, University of Utrecht, 2002.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 11F03, 11F11, 11F30, 11F37, 11F67

Retrieve articles in all journals with MSC (2010): 11F03, 11F11, 11F30, 11F37, 11F67


Additional Information

Kathrin Bringmann
Affiliation: Mathematical Institute, University of Cologne, Weyertal 86-90, 50931 Cologne, Germany
Email: kbringma@math.uni-koeln.de

Karl-Heinz Fricke
Affiliation: Max-Planck-Institut für Mathematik, Vivatsgasse 7, 53111, Bonn, Germany
Email: fricke.karl-heinz@freenet.de

Zachary A. Kent
Affiliation: Department of Mathematics and Computer Science, Emory University, Atlanta, Georgia 30322
Email: kent@mathcs.emory.edu

DOI: https://doi.org/10.1090/S0002-9939-2014-12092-2
Received by editor(s): November 7, 2012
Published electronically: June 27, 2014
Additional Notes: The research of the first author was supported by the Alfried Krupp Prize for Young University Teachers of the Krupp Foundation.
Communicated by: Ken Ono
Article copyright: © Copyright 2014 American Mathematical Society

American Mathematical Society