Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

Request Permissions   Purchase Content 
 
 

 

Free but not recursively free arrangements


Authors: M. Cuntz and T. Hoge
Journal: Proc. Amer. Math. Soc. 143 (2015), 35-40
MSC (2010): Primary 13N15, 14N20, 20F55, 52C35
DOI: https://doi.org/10.1090/S0002-9939-2014-12263-5
Published electronically: August 15, 2014
MathSciNet review: 3272729
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We construct counterexamples to the conjecture that every free arrangement is recursively free in characteristic zero. The intersection lattice of our smallest example has a realization over a finite field which is recursively free, thus recursive freeness is not a combinatorial property of the intersection lattice of an arrangement.


References [Enhancements On Off] (What's this?)

  • [1] Wieb Bosma, John Cannon, and Catherine Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), no. 3-4, 235-265. Computational algebra and number theory (London, 1993). MR 1484478, https://doi.org/10.1006/jsco.1996.0125
  • [2] Michael Cuntz, Minimal fields of definition for simplicial arrangements in the real projective plane, Innov. Incidence Geom. 12 (2011), 12. MR 2942717
  • [3] Michael Cuntz and David Geis, Combinatorial simpliciality of arrangements of hyperplanes, arXiv:1302.2052v1 (2013), 19 pp.
  • [4] Torsten Hoge and Gerhard Röhrle, On inductively free reflection arrangements, arXiv:1208.3131 (2012), 16 pp.
  • [5] James E. Humphreys, Reflection groups and Coxeter groups, Cambridge Studies in Advanced Mathematics, vol. 29, Cambridge University Press, Cambridge, 1990. MR 1066460 (92h:20002)
  • [6] Peter Orlik and Hiroaki Terao, Arrangements of hyperplanes, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 300, Springer-Verlag, Berlin, 1992. MR 1217488 (94e:52014)
  • [7] Bruce E. Sagan, Why the characteristic polynomial factors, Bull. Amer. Math. Soc. (N.S.) 36 (1999), no. 2, 113-133. MR 1659875 (2000a:06021), https://doi.org/10.1090/S0273-0979-99-00775-2
  • [8] Singular - A computer algebra system for polynomial computations, available at http://www.singular.uni-kl.de.
  • [9] Hiroaki Terao, Arrangements of hyperplanes and their freeness. I, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 27 (1980), no. 2, 293-312. MR 586451 (84i:32016a)
  • [10] Hiroaki Terao, The exponents of a free hypersurface, Singularities, Part 2 (Arcata, Calif., 1981) Proc. Sympos. Pure Math., vol. 40, Amer. Math. Soc., Providence, RI, 1983, pp. 561-566. MR 713280 (85a:32012)
  • [11] Masahiko Yoshinaga, On the freeness of 3-arrangements, Bull. London Math. Soc. 37 (2005), no. 1, 126-134. MR 2105827 (2005i:52030), https://doi.org/10.1112/S0024609304003704
  • [12] Masahiko Yoshinaga, Freeness of hyperplane arrangements and related topics, arXiv:1212.3523v1 (2012).
  • [13] Gunter Matthias Ziegler, Algebraic combinatorics of hyperplane arrangements, ProQuest LLC, Ann Arbor, MI. Thesis (Ph.D.)-Massachusetts Institute of Technology, 1987. MR 2941139
  • [14] Günter M. Ziegler, Matroid representations and free arrangements, Trans. Amer. Math. Soc. 320 (1990), no. 2, 525-541. MR 986703 (90k:32045), https://doi.org/10.2307/2001687

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 13N15, 14N20, 20F55, 52C35

Retrieve articles in all journals with MSC (2010): 13N15, 14N20, 20F55, 52C35


Additional Information

M. Cuntz
Affiliation: Fachbereich Mathematik, Universität Kaiserslautern, Postfach 3049, D-67653 Kaiserslautern, Germany
Address at time of publication: Institut für Algebra, Zahlentheorie und Disfinite Mathematik, Fakulüt für Mathematik und Physik, Leibniz Universität Hannover, Welfengarten 1, 30167 Hannover, Germany

T. Hoge
Affiliation: Fakultät für Mathematik, Ruhr-Universität Bochum, Universitätsstrasse 150, D- 44780 Bochum, Germany
Address at time of publication: Institut für Algebra, Zahlentheorie und Disfinite Mathematik, Fakulüt für Mathematik und Physik, Leibniz Universität Hannover, Welfengarten 1, 30167 Hannover, Germany

DOI: https://doi.org/10.1090/S0002-9939-2014-12263-5
Received by editor(s): February 28, 2013
Published electronically: August 15, 2014
Communicated by: Lev Borisov
Article copyright: © Copyright 2014 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society