Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

Request Permissions   Purchase Content 
 
 

 

On the $ p$-adic Second Main Theorem


Author: Aaron Levin
Journal: Proc. Amer. Math. Soc. 143 (2015), 633-640
MSC (2010): Primary 32P05; Secondary 32H30, 11J97
DOI: https://doi.org/10.1090/S0002-9939-2014-12530-5
Published electronically: October 3, 2014
MathSciNet review: 3283650
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study the Second Main Theorem in non-archimedean Nevanlinna theory, giving an improvement to the non-archimedean Second Main Theorems of Ru and An in the case where all the hypersurfaces have degree greater than one and all intersections are transverse. In particular, under a transversality assumption, if $ f$ is a nonconstant non-archimedean analytic map to $ \mathbb{P}^n$ and $ D_1,\ldots , D_q$ are hypersurfaces of degree $ d$, we prove the defect relation

$\displaystyle \sum _{i=1}^q\delta _f(D_i)\leq n-1+\frac {1}{d},$    

which is sharp for all positive integers $ n$ and $ d$.

References [Enhancements On Off] (What's this?)

  • [1] Ta Thi Hoai An, A defect relation for non-Archimedean analytic curves in arbitrary projective varieties, Proc. Amer. Math. Soc. 135 (2007), no. 5, 1255-1261 (electronic). MR 2276632 (2007j:32017), https://doi.org/10.1090/S0002-9939-06-08591-1
  • [2] Ta Thi Hoai An, Julie Tzu-Yueh Wang, and Pit-Mann Wong, Non-Archimedean analytic curves in the complements of hypersurface divisors, J. Number Theory 128 (2008), no. 8, 2275-2281. MR 2394821 (2009c:14041), https://doi.org/10.1016/j.jnt.2007.10.011
  • [3] A. Boutabaa, Sur la théorie de Nevanlinna $ p$-adique, Thése de Doctorat, Université Paris 7, 1991.
  • [4] Abdelbaki Boutabaa, Sur les courbes holomorphes $ p$-adiques, Ann. Fac. Sci. Toulouse Math. (6) 5 (1996), no. 1, 29-52 (French, with English and French summaries). MR 1413843 (97g:32029)
  • [5] H. Cartan, Sur les zeros des combinaisions linearires de $ p$ fonctions holomorpes donnees, Mathematica 7 (1933).
  • [6] William Cherry and Zhuan Ye, Non-Archimedean Nevanlinna theory in several variables and the non-Archimedean Nevanlinna inverse problem, Trans. Amer. Math. Soc. 349 (1997), no. 12, 5043-5071. MR 1407485 (98c:11072), https://doi.org/10.1090/S0002-9947-97-01874-6
  • [7] A. È. Erëmenko and M. L. Sodin, Distribution of values of meromorphic functions and meromorphic curves from the standpoint of potential theory, Algebra i Analiz 3 (1991), no. 1, 131-164 (Russian); English transl., St. Petersburg Math. J. 3 (1992), no. 1, 109-136. MR 1120844 (93a:32003)
  • [8] Ha Huy Khoai and Mai Van Tu, $ p$-adic Nevanlinna-Cartan theorem, Internat. J. Math. 6 (1995), no. 5, 719-731. MR 1351163 (96k:32053), https://doi.org/10.1142/S0129167X95000304
  • [9] Min Ru, A note on $ p$-adic Nevanlinna theory, Proc. Amer. Math. Soc. 129 (2001), no. 5, 1263-1269. MR 1712881 (2001h:11097), https://doi.org/10.1090/S0002-9939-00-05680-X
  • [10] Min Ru, A defect relation for holomorphic curves intersecting hypersurfaces, Amer. J. Math. 126 (2004), no. 1, 215-226. MR 2033568 (2004k:32026)
  • [11] Min Ru, Holomorphic curves into algebraic varieties, Ann. of Math. (2) 169 (2009), no. 1, 255-267. MR 2480605 (2010d:32009), https://doi.org/10.4007/annals.2009.169.255

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 32P05, 32H30, 11J97

Retrieve articles in all journals with MSC (2010): 32P05, 32H30, 11J97


Additional Information

Aaron Levin
Affiliation: Department of Mathematics, Michigan State University, East Lansing, Michigan 48824
Email: adlevin@math.msu.edu

DOI: https://doi.org/10.1090/S0002-9939-2014-12530-5
Received by editor(s): April 14, 2013
Published electronically: October 3, 2014
Communicated by: Ken Ono
Article copyright: © Copyright 2014 American Mathematical Society

American Mathematical Society