Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Abelian varieties without a prescribed Newton Polygon reduction


Authors: Jiangwei Xue and Chia-Fu Yu
Journal: Proc. Amer. Math. Soc. 143 (2015), 2339-2345
MSC (2010): Primary 11G15; Secondary 14K22
DOI: https://doi.org/10.1090/S0002-9939-2015-12483-5
Published electronically: January 21, 2015
MathSciNet review: 3326016
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this article we construct for each integer $ g\ge 2$ an abelian variety $ A$ of dimension $ g$ defined over a number field for which there exists a symmetric integral slope sequence of length $ 2g$ that does not appear as the slope sequence of $ \widetilde {A}$ for any good reduction $ \widetilde {A}$ of $ A$.


References [Enhancements On Off] (What's this?)

  • [1] Fedor A. Bogomolov and Yuri G. Zarhin, Ordinary reduction of $ K3$ surfaces, Cent. Eur. J. Math. 7 (2009), no. 2, 206-213. MR 2506961 (2010h:14038), https://doi.org/10.2478/s11533-009-0013-8
  • [2] Noam D. Elkies, The existence of infinitely many supersingular primes for every elliptic curve over $ {\bf Q}$, Invent. Math. 89 (1987), no. 3, 561-567. MR 903384 (88i:11034), https://doi.org/10.1007/BF01388985
  • [3] Taira Honda, On the Jacobian variety of the algebraic curve $ y^{2}=1-x^{l}$ over a field of characteristic $ p>0$, Osaka J. Math. 3 (1966), 189-194. MR 0225777 (37 #1370)
  • [4] Serge Lang, Algebraic number theory, 2nd ed., Graduate Texts in Mathematics, vol. 110, Springer-Verlag, New York, 1994. MR 1282723 (95f:11085)
  • [5] Ju. I. Manin, Theory of commutative formal groups over fields of finite characteristic, Uspehi Mat. Nauk 18 (1963), no. 6 (114), 3-90 (Russian). MR 0157972 (28 #1200)
  • [6] Rutger Noot, Abelian varieties--Galois representation and properties of ordinary reduction, Compositio Math. 97 (1995), no. 1-2, 161-171. Special issue in honour of Frans Oort. MR 1355123 (97a:11093)
  • [7] Rutger Noot, Abelian varieties with $ l$-adic Galois representation of Mumford's type, J. Reine Angew. Math. 519 (2000), 155-169. MR 1739726 (2001k:11112), https://doi.org/10.1515/crll.2000.010
  • [8] A. Ogus, Hodge cycles and crystalline cohomology, Lecture Notes in Math., vol. 1, Springer-Verlag, 900 (1982), 357-414.
  • [9] Bjorn Poonen, Drinfeld modules with no supersingular primes, Internat. Math. Res. Notices 3 (1998), 151-159. MR 1606391 (99a:11074), https://doi.org/10.1155/S1073792898000130
  • [10] Jean-Pierre Serre, Abelian $ l$-adic representations and elliptic curves, McGill University lecture notes written with the collaboration of Willem Kuyk and John Labute, W. A. Benjamin, Inc., New York-Amsterdam, 1968. MR 0263823 (41 #8422)
  • [11] Jean-Pierre Serre and John Tate, Good reduction of abelian varieties, Ann. of Math. (2) 88 (1968), 492-517. MR 0236190 (38 #4488)
  • [12] Goro Shimura and Yutaka Taniyama, Complex multiplication of abelian varieties and its applications to number theory, Publications of the Mathematical Society of Japan, vol. 6, The Mathematical Society of Japan, Tokyo, 1961. MR 0125113 (23 #A2419)
  • [13] S. G. Tankeev, On the weights of an $ l$-adic representation and the arithmetic of Frobenius eigenvalues, Izv. Ross. Akad. Nauk Ser. Mat. 63 (1999), no. 1, 185-224 (Russian, with Russian summary); English transl., Izv. Math. 63 (1999), no. 1, 181-218. MR 1701843 (2000f:11072), https://doi.org/10.1070/im1999v063n01ABEH000233
  • [14] John Tate, Classes d'isogénie des variétés abéliennes sur un corps fini (d'après T. Honda), Séminaire Bourbaki. Vol. 1968/69: Exposés 347-363, Lecture Notes in Math., vol. 175, Springer, Berlin, 1971, pp. Exp. No. 352, 95-110 (French). MR 3077121
  • [15] Chia-Fu Yu, The isomorphism classes of abelian varieties of CM-type, J. Pure Appl. Algebra 187 (2004), no. 1-3, 305-319. MR 2027907 (2004k:14077), https://doi.org/10.1016/S0022-4049(03)00144-0
  • [16] Chia-Fu Yu, Endomorphism algebras of QM abelian surfaces, J. Pure Appl. Algebra 217 (2013), no. 5, 907-914. MR 3003315, https://doi.org/10.1016/j.jpaa.2012.09.022

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 11G15, 14K22

Retrieve articles in all journals with MSC (2010): 11G15, 14K22


Additional Information

Jiangwei Xue
Affiliation: Institute of Mathematics, Academia Sinica and NCTS (Taipei Office), 6th Floor, Astronomy Mathematics Building, No. 1, Roosevelt Road Section 4, Taipei, Taiwan, 10617
Address at time of publication: Collaborative Innovation Centre of Mathematics, School of Mathematics and Statistics, Wuhan University, Luojiashan, Wuhan, Hubei, 430072, People’s Republic of China
Email: xue_j@whu.edu.cn

Chia-Fu Yu
Affiliation: Institute of Mathematics, Academia Sinica and NCTS (Taipei Office), 6th Floor, Astronomy Mathematics Building, No. 1, Roosevelt Road Section 4, Taipei, Taiwan, 10617
Email: chiafu@math.sinica.edu.tw

DOI: https://doi.org/10.1090/S0002-9939-2015-12483-5
Received by editor(s): November 5, 2013
Received by editor(s) in revised form: January 13, 2014
Published electronically: January 21, 2015
Communicated by: Matthew A. Papanikolas
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society