Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On symmetric powers of $ \tau$-recurrent sequences and deformations of Eisenstein series


Authors: Ahmad El-Guindy and Aleksandar Petrov
Journal: Proc. Amer. Math. Soc. 143 (2015), 3303-3318
MSC (2010): Primary 11F52, 11G09, 11M38
DOI: https://doi.org/10.1090/proc/12406
Published electronically: April 28, 2015
MathSciNet review: 3348773
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove the equality of several $ \tau $-recurrent sequences, which were first considered by Pellarin and which have close connections to Drinfeld vectorial modular forms. Our result has several consequences: an $ A$-expansion for the $ l^$$ \text {th}$ power ( $ 1 \leq l \leq q$) of the deformation of the weight $ 2$ Eisenstein series; relations between Drinfeld modular forms with $ A$-expansions; and a new proof of relations between special values of Pellarin $ L$-series.


References [Enhancements On Off] (What's this?)

  • [1] Vincent Bosser and Federico Pellarin, Drinfeld $ A$-quasi-modular forms, Arithmetic and Galois theories of differential equations, Sémin. Congr., vol. 23, Soc. Math. France, Paris, 2011, pp. 63-88 (English, with English and French summaries). MR 3076079
  • [2] Ahmad El-Guindy and Matthew A. Papanikolas, Explicit formulas for Drinfeld modules and their periods, J. Number Theory 133 (2013), no. 6, 1864-1886. MR 3027943, https://doi.org/10.1016/j.jnt.2012.10.013
  • [3] Ahmad El-Guindy and Matthew A. Papanikolas, Identities for Anderson generating functions for Drinfeld modules, Monatsh. Math. 173 (2014) no. 4, 471-493. MR 3177942
  • [4] Ernst-Ulrich Gekeler, On the coefficients of Drinfel'd modular forms, Invent. Math. 93 (1988), no. 3, 667-700. MR 952287 (89g:11043), https://doi.org/10.1007/BF01410204
  • [5] David Goss, Modular forms for $ {\bf F}_{r}[T]$, J. Reine Angew. Math. 317 (1980), 16-39. MR 581335 (82m:10049), https://doi.org/10.1515/crll.1980.317.16
  • [6] David Goss, $ \pi $-adic Eisenstein series for function fields, Compositio Math. 41 (1980), no. 1, 3-38. MR 0578049
  • [7] David Goss, Basic structures of function field arithmetic, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 35, Springer, 1996. MR 1423131 (97i:11062)
  • [8] David Goss, On the $ L$-series of F. Pellarin, J. Number Theory 133 (2013), no. 3, 955-962. MR 2997778, https://doi.org/10.1016/j.jnt.2011.12.001
  • [9] Bartolomé López, A non-standard Fourier expansion for the Drinfeld discriminant function, Arch. Math. (Basel) 95 (2010), no. 2, 143-150. MR 2674250 (2011h:11054), https://doi.org/10.1007/s00013-010-0148-7
  • [10] E. Lucas, Sur les congruences des nombres eulériens et les coefficients différentiels des functions trigonométriques suivant un module premier, Bull. Soc. Math. France 6 (1878), 49-54 (French). MR 1503769
  • [11] Federico Pellarin, $ \tau $-recurrent sequence and modular forms, arXiv:1105.5819v3 (2011), preprint.
  • [12] Federico Pellarin, Values of certain $ L$-series in positive characteristic, Ann. of Math. (2) 176 (2012), no. 3, 2055-2093. MR 2979866, https://doi.org/10.4007/annals.2012.176.3.13
  • [13] Federico Pellarin, Estimating the order of vanishing at infinity of Drinfeld quasi-modular forms, J. Reine Angew. Math. 687 (2014), 1-42. MR 3176606
  • [14] Federico Pellarin, Personal communication, (2013).
  • [15] Rudolph Perkins, Explicit formulae for L-values in finite characteristic, arXiv:1207.1753v1 (2012), preprint.
  • [16] Aleksandar Petrov, $ A$-expansions of Drinfeld modular forms, J. Number Theory 133 (2013), no. 7, 2247-2266. MR 3035961, https://doi.org/10.1016/j.jnt.2012.12.012
  • [17] W.A. Stein et al., Sage Mathematics Software (Version 4.8), The Sage Development Team, 2012, http://www.sagemath.org.
  • [18] Dinesh S. Thakur, Function field arithmetic, World Scientific Publishing Co. Inc., River Edge, NJ, 2004. MR 2091265 (2005h:11115)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 11F52, 11G09, 11M38

Retrieve articles in all journals with MSC (2010): 11F52, 11G09, 11M38


Additional Information

Ahmad El-Guindy
Affiliation: Department of Mathematics, Faculty of Science, Cairo University, Giza 12613, Egypt
Address at time of publication: Texas A&M University at Qatar, Science Program, Doha 23874, Qatar
Email: a.elguindy@gmail.com

Aleksandar Petrov
Affiliation: Texas A&M University at Qatar, Science Program, Doha 23874, Qatar
Address at time of publication: Max Planck Institute for Mathematics, vivatsgasse 7, 53111 Bonn, Germany
Email: apetrov@mpim-bonn.mpg.de

DOI: https://doi.org/10.1090/proc/12406
Keywords: Vectorial Drinfeld modular forms, $\tau$-recurrent sequences, deformations of Eisenstein series, $A$-expansions
Received by editor(s): May 12, 2013
Received by editor(s) in revised form: October 13, 2013
Published electronically: April 28, 2015
Communicated by: Matthew A. Papanikolas
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society