Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

Request Permissions   Purchase Content 
 
 

 

Generalized quasidisks and conformality II


Author: Chang-Yu Guo
Journal: Proc. Amer. Math. Soc. 143 (2015), 3505-3517
MSC (2010): Primary 30C62, 30C65
DOI: https://doi.org/10.1090/S0002-9939-2015-12449-5
Published electronically: February 25, 2015
MathSciNet review: 3348792
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We introduce a weaker variant of the concept of three point property, which is equivalent to a non-linear local connectivity condition introduced by the author, Koskela, and Takkinen, sufficient to guarantee the extendability of a conformal map $ f:\mathbb{D}\to \Omega $ to the entire plane as a homeomorphism of locally exponentially integrable distortion. Sufficient conditions for extendability to a homeomorphism of locally $ p$-integrable distortion are also given.


References [Enhancements On Off] (What's this?)

  • [1] Lars V. Ahlfors, Quasiconformal reflections, Acta Math. 109 (1963), 291-301. MR 0154978 (27 #4921)
  • [2] Lars V. Ahlfors, Lectures on quasiconformal mappings, 2nd ed., University Lecture Series, vol. 38, American Mathematical Society, Providence, RI, 2006. With supplemental chapters by C. J. Earle, I. Kra, M. Shishikura and J. H. Hubbard. MR 2241787 (2009d:30001)
  • [3] Kari Astala, James T. Gill, Steffen Rohde, and Eero Saksman, Optimal regularity for planar mappings of finite distortion, Ann. Inst. H. Poincaré Anal. Non Linéaire 27 (2010), no. 1, 1-19. MR 2580501 (2011k:30025), https://doi.org/10.1016/j.anihpc.2009.01.012
  • [4] Kari Astala, Tadeusz Iwaniec, and Gaven Martin, Elliptic partial differential equations and quasiconformal mappings in the plane, Princeton Mathematical Series, vol. 48, Princeton University Press, Princeton, NJ, 2009. MR 2472875 (2010j:30040)
  • [5] A. Beurling and L. Ahlfors, The boundary correspondence under quasiconformal mappings, Acta Math. 96 (1956), 125-142. MR 0086869 (19,258c)
  • [6] Jixiu Chen, Zhiguo Chen, and Chengqi He, Boundary correspondence under $ \mu (z)$-homeomorphisms, Michigan Math. J. 43 (1996), no. 2, 211-220. MR 1398150 (97e:30034), https://doi.org/10.1307/mmj/1029005458
  • [7] Guy David, Solutions de l'équation de Beltrami avec $ \Vert \mu \Vert _\infty =1$, Ann. Acad. Sci. Fenn. Ser. A I Math. 13 (1988), no. 1, 25-70 (French). MR 975566 (90d:30058), https://doi.org/10.5186/aasfm.1988.1303
  • [8] Frederick W. Gehring, Characteristic properties of quasidisks, Séminaire de Mathématiques Supérieures [Seminar on Higher Mathematics], vol. 84, Presses de l'Université de Montréal, Montreal, Que., 1982. MR 674294 (84a:30036)
  • [9] F. W. Gehring and K. Hag, Reflections on reflections in quasidisks, Papers on analysis, Rep. Univ. Jyväskylä Dep. Math. Stat., vol. 83, Univ. Jyväskylä, Jyväskylä, 2001, pp. 81-90. MR 1886615 (2003d:30058)
  • [10] C. Y. Guo, Uniform continuity of quasiconformal mappings onto generalized John domains, Ann. Acad. Sci. Fenn. Math. 40 (2015), no. 1, 183-202, DOI:10:5186/aasfm.2015.4010.
  • [11] Chang-Yu Guo and Pekka Koskela, Generalized John disks, Cent. Eur. J. Math. 12 (2014), no. 2, 349-361. MR 3130689, https://doi.org/10.2478/s11533-013-0344-3
  • [12] Chang-Yu Guo, Pekka Koskela, and Juhani Takkinen, Generalized quasidisks and conformality, Publ. Mat. 58 (2014), no. 1, 193-212. MR 3161514
  • [13] Stanislav Hencl and Pekka Koskela, Regularity of the inverse of a planar Sobolev homeomorphism, Arch. Ration. Mech. Anal. 180 (2006), no. 1, 75-95. MR 2211707 (2007e:30020), https://doi.org/10.1007/s00205-005-0394-1
  • [14] David A. Herron and Pekka Koskela, Mappings of finite distortion: gauge dimension of generalized quasicircles, Illinois J. Math. 47 (2003), no. 4, 1243-1259. MR 2037001 (2005a:30031)
  • [15] John G. Hocking and Gail S. Young, Topology, 2nd ed., Dover Publications Inc., New York, 1988. MR 1016814 (90h:54001)
  • [16] Tadeusz Iwaniec, Pekka Koskela, and Jani Onninen, Mappings of finite distortion: compactness, Ann. Acad. Sci. Fenn. Math. 27 (2002), no. 2, 391-417. MR 1922197 (2004b:30045)
  • [17] R. Kühnau, Möglichst konforme Spiegelung an einer Jordankurve, Jahresber. Deutsch. Math.-Verein. 90 (1988), no. 2, 90-109 (German). MR 939755 (89d:30023)
  • [18] Pekka Koskela, Jani Onninen, and Jeremy T. Tyson, Quasihyperbolic boundary conditions and capacity: Hölder continuity of quasiconformal mappings, Comment. Math. Helv. 76 (2001), no. 3, 416-435. MR 1854692 (2002j:30026), https://doi.org/10.1007/PL00013214
  • [19] Pekka Koskela and Juhani Takkinen, Mappings of finite distortion: formation of cusps, Publ. Mat. 51 (2007), no. 1, 223-242. MR 2307153 (2008e:30026), https://doi.org/10.5565/PUBLMAT_51107_10
  • [20] Pekka Koskela and Juhani Takkinen, A note to ``Mappings of finite distortion: formation of cusps II'' [MR2354095], Conform. Geom. Dyn. 14 (2010), 184-189. MR 2670509 (2011g:30056), https://doi.org/10.1090/S1088-4173-2010-00211-0
  • [21] O. Lehto and K. I. Virtanen, Quasiconformal mappings in the plane, 2nd ed., Springer-Verlag, New York, 1973. Translated from the German by K. W. Lucas; Die Grundlehren der mathematischen Wissenschaften, Band 126. MR 0344463 (49 #9202)
  • [22] Raimo Näkki and Jussi Väisälä, John disks, Exposition. Math. 9 (1991), no. 1, 3-43. MR 1101948 (92i:30021)
  • [23] Jani Onninen and Xiao Zhong, A note on mappings of finite distortion: the sharp modulus of continuity, Michigan Math. J. 53 (2005), no. 2, 329-335. MR 2152704 (2006c:30025), https://doi.org/10.1307/mmj/1123090772
  • [24] Juhani Takkinen, Mappings of finite distortion: formation of cusps. II, Conform. Geom. Dyn. 11 (2007), 207-218. MR 2354095 (2009f:30055), https://doi.org/10.1090/S1088-4173-07-00170-1
  • [25] Matti Vuorinen, Conformal geometry and quasiregular mappings, Lecture Notes in Mathematics, vol. 1319, Springer-Verlag, Berlin, 1988. MR 950174 (89k:30021)
  • [26] Saeed Zakeri, On boundary homeomorphisms of trans-quasiconformal maps of the disk, Ann. Acad. Sci. Fenn. Math. 33 (2008), no. 1, 241-260. MR 2386849 (2009a:30047)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 30C62, 30C65

Retrieve articles in all journals with MSC (2010): 30C62, 30C65


Additional Information

Chang-Yu Guo
Affiliation: Department of Mathematics and Statistics, University of Jyväskylä, P.O. Box 35, FI-40014 University of Jyväskylä, Finland
Email: changyu.c.guo@jyu.fi

DOI: https://doi.org/10.1090/S0002-9939-2015-12449-5
Keywords: Homeomorphism of finite distortion, generalized quasidisk, local connectivity, three point property
Received by editor(s): August 1, 2013
Received by editor(s) in revised form: January 15, 2014
Published electronically: February 25, 2015
Additional Notes: The author was partially supported by the Academy of Finland grant 131477.
Communicated by: Jeremy Tyson
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society