Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A note on extreme points of $ C^\infty$-smooth balls in polyhedral spaces


Authors: A. J. Guirao, V. Montesinos and V. Zizler
Journal: Proc. Amer. Math. Soc. 143 (2015), 3413-3420
MSC (2010): Primary 46B20; Secondary 46B03, 46B10, 46B22
DOI: https://doi.org/10.1090/S0002-9939-2015-12617-2
Published electronically: April 2, 2015
MathSciNet review: 3348784
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Morris (1983) proved that every separable Banach space $ X$ that contains an isomorphic copy of $ c_0$ has an equivalent strictly convex norm such that all points of its unit sphere $ S_X$ are unpreserved extreme, i.e., they are no longer extreme points of $ B_{X^{**}}$. We use a result of Hájek (1995) to prove that any separable infinite-dimensional polyhedral Banach space has an equivalent $ C^{\infty }$-smooth and strictly convex norm with the same property as in Morris' result. We additionally show that no point on the sphere of a $ C^2$-smooth equivalent norm on a polyhedral infinite-dimensional space can be strongly extreme, i.e., there is no point $ x$ on the sphere for which a sequence $ (h_n)$ in $ X$ with $ \Vert h_n\Vert\not \to 0$ exists such that $ \Vert x\pm h_n\Vert\to 1$.


References [Enhancements On Off] (What's this?)

  • [DGZ] Robert Deville, Gilles Godefroy, and Václav Zizler, Smoothness and renormings in Banach spaces, Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 64, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1993. MR 1211634 (94d:46012)
  • [FWZ83] M. Fabián, J. H. M. Whitfield, and V. Zizler, Norms with locally Lipschitzian derivatives, Israel J. Math. 44 (1983), no. 3, 262-276. MR 693663 (84i:46028), https://doi.org/10.1007/BF02760975
  • [FHHMZ] Marián Fabian, Petr Habala, Petr Hájek, Vicente Montesinos, and Václav Zizler, Banach space theory, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, Springer, New York, 2011. The basis for linear and nonlinear analysis. MR 2766381 (2012h:46001)
  • [Fo77] V. P. Fonf, A property of Lindenstrauss-Phelps spaces, Funktsional. Anal. i Prilozhen. 13 (1979), no. 1, 79-80 (Russian). MR 527533 (80c:46022)
  • [Fo80] V. P. Fonf, Some properties of polyhedral Banach spaces, Funktsional. Anal. i Prilozhen. 14 (1980), no. 4, 89-90 (Russian). MR 595744 (82a:46017)
  • [Fo81] V. P. Fonf, Polyhedral Banach spaces, Mat. Zametki 30 (1981), no. 4, 627-634, 638 (Russian). MR 638435 (84j:46018)
  • [FLP01] V. P. Fonf, J. Lindenstrauss, and R. R. Phelps, Infinite dimensional convexity, Handbook of the geometry of Banach spaces, Vol. I, North-Holland, Amsterdam, 2001, pp. 599-670. MR 1863703 (2003c:46014), https://doi.org/10.1016/S1874-5849(01)80017-6
  • [GM72] Alan Gleit and Robert McGuigan, A note on polyhedral Banach spaces, Proc. Amer. Math. Soc. 33 (1972), 398-404. MR 0295055 (45 #4123)
  • [GLT92] B. V. Godun, Bor-Luh Lin, and S. L. Troyanski, On the strongly extreme points of convex bodies in separable Banach spaces, Proc. Amer. Math. Soc. 114 (1992), no. 3, 673-675. MR 1070518 (92f:46014), https://doi.org/10.2307/2159387
  • [Go87] Gilles Godefroy, Boundaries of a convex set and interpolation sets, Math. Ann. 277 (1987), no. 2, 173-184. MR 886417 (88f:46037), https://doi.org/10.1007/BF01457357
  • [Go01] Gilles Godefroy, The Banach space $ c_0$, Extracta Math. 16 (2001), no. 1, 1-25. MR 1837770 (2002f:46015)
  • [Ha95] Petr Hájek, Smooth norms that depend locally on finitely many coordinates, Proc. Amer. Math. Soc. 123 (1995), no. 12, 3817-3821. MR 1285993 (96e:46017), https://doi.org/10.2307/2161911
  • [Ha98] Petr Hájek, Smooth functions on $ c_0$, Israel J. Math. 104 (1998), 17-27. MR 1622271 (99d:46063), https://doi.org/10.1007/BF02897057
  • [HMZ12] P. Hájek, V. Montesinos, and V. Zizler, Geometry and Gâteaux smoothness in separable Banach spaces, Oper. Matrices 6 (2012), no. 2, 201-232. MR 2976113, https://doi.org/10.7153/oam-06-15
  • [HMS] Zhibao Hu, Warren B. Moors, and Mark A. Smith, On a Banach space without a weak mid-point locally uniformly rotund norm, Bull. Austral. Math. Soc. 56 (1997), no. 2, 193-196. MR 1470070 (99a:46015), https://doi.org/10.1017/S0004972700030914
  • [K59] Victor Klee, Some characterizations of convex polyhedra, Acta Math. 102 (1959), 79-107. MR 0105651 (21 #4390)
  • [K60] Victor Klee, Polyhedral sections of convex bodies, Acta Math. 103 (1960), 243-267. MR 0139073 (25 #2512)
  • [LPT09] S. Lajara, A. J. Pallarés, and S. Troyanski, Bidual renormings of Banach spaces, J. Math. Anal. Appl. 350 (2009), no. 2, 630-639. MR 2474800 (2009k:46027), https://doi.org/10.1016/j.jmaa.2008.05.021
  • [L64] Joram Lindenstrauss, Notes on Klee's paper: ``Polyhedral sections of convex bodies'', Israel J. Math. 4 (1966), 235-242. MR 0209807 (35 #703)
  • [LLT88] Bor-Luh Lin, Pei-Kee Lin, and S. L. Troyanski, Characterizations of denting points, Proc. Amer. Math. Soc. 102 (1988), no. 3, 526-528. MR 928972 (89e:46016), https://doi.org/10.2307/2047215
  • [MOTV01] A. Moltó, J. Orihuela, S. Troyanski, and M. Valdivia, Midpoint locally uniform rotundity and a decomposition method for renorming, Q. J. Math. 52 (2001), no. 2, 181-193. MR 1838362 (2002f:46021), https://doi.org/10.1093/qjmath/52.2.181
  • [Mo83] Peter Morris, Disappearance of extreme points, Proc. Amer. Math. Soc. 88 (1983), no. 2, 244-246. MR 695251 (85b:46021), https://doi.org/10.2307/2044709
  • [PWZ81] J. Pechanec, J. H. M. Whitfield, and V. Zizler, Norms locally dependent on finitely many coordinates, An. Acad. Brasil. Ciênc. 53 (1981), no. 3, 415-417. MR 663236 (83h:46025)
  • [Ro81] Gerd Rodé, Superkonvexität und schwache Kompaktheit, Arch. Math. (Basel) 36 (1981), no. 1, 62-72 (German). MR 612238 (82j:46012), https://doi.org/10.1007/BF01223670
  • [Ve00] Libor Veselý, Boundary of polyhedral spaces: an alternative proof, Extracta Math. 15 (2000), no. 1, 213-217. MR 1792990 (2001j:46014)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 46B20, 46B03, 46B10, 46B22

Retrieve articles in all journals with MSC (2010): 46B20, 46B03, 46B10, 46B22


Additional Information

A. J. Guirao
Affiliation: Instituto de Matemática Pura y Aplicada. Universitat Politècnica de València, C/ Vera, s/n, 46020 Valencia, Spain
Email: anguisa2@mat.upv.es

V. Montesinos
Affiliation: Instituto de Matemática Pura y Aplicada. Universitat Politècnica de València, C/ Vera, s/n, 46020 Valencia, Spain
Email: vmontesinos@mat.upv.es

V. Zizler
Affiliation: Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta, Canada
Email: vasekzizler@gmail.com

DOI: https://doi.org/10.1090/S0002-9939-2015-12617-2
Keywords: Polyhedral space, extreme point, norm that locally depends on a finite number of coordinates, countable James boundary.
Received by editor(s): July 8, 2013
Published electronically: April 2, 2015
Additional Notes: The first author’s research was supported by Ministerio de Economía y Competitividad and FEDER under project MTM2011-25377 and the Universitat Politècnica de València.
The second author’s research was supported by Ministerio de Economía y Competitividad and FEDER under project MTM2011-22417 and the Universitat Politècnica de València.
Communicated by: Thomas Schlumprecht
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society