Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

One-parameter continuous fields of Kirchberg algebras with rational $ K$-theory


Authors: Rasmus Bentmann and Marius Dadarlat
Journal: Proc. Amer. Math. Soc. 143 (2015), 3455-3463
MSC (2010): Primary 46L35, 46L80, 19K35, 46M20
DOI: https://doi.org/10.1090/proc12742
Published electronically: April 16, 2015
MathSciNet review: 3348788
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show that separable continuous fields over the unit interval whose fibers are stable Kirchberg algebras that satisfy the universal coefficient theorem in $ \textup {KK}$-theory (UCT) and have rational $ \textup {K}$-theory groups are classified up to isomorphism by filtrated $ \textup {K}$-theory.


References [Enhancements On Off] (What's this?)

  • [1] Anne Bauval, $ RKK(X)$-nucléarité (d'après G. Skandalis), $ K$-Theory 13 (1998), no. 1, 23-40 (French, with English and French summaries). MR 1610242 (99h:19007), https://doi.org/10.1023/A:1007727426701
  • [2] Rasmus Bentmann and Manuel Köhler, Universal Coefficient Theorems for $ C^*$-algebras over finite topological spaces (2011), available at arXiv:math/1101.5702v3.
  • [3] Etienne Blanchard and Eberhard Kirchberg, Non-simple purely infinite $ C^*$-algebras: the Hausdorff case, J. Funct. Anal. 207 (2004), no. 2, 461-513. MR 2032998 (2005b:46136), https://doi.org/10.1016/j.jfa.2003.06.008
  • [4] Alexander Bonkat, Bivariante $ K$-Theorie für Kategorien projektiver Systeme von $ C^*$-Algebren, Ph.D. Thesis, 2002 (German). Available at the Deutsche Nationalbibliothek at http://deposit.ddb.de/cgi-bin/dokserv?idn=967387191.
  • [5] Marius Dadarlat, Fiberwise $ KK$-equivalence of continuous fields of $ C^*$-algebras, J. K-Theory 3 (2009), no. 2, 205-219. MR 2496447 (2010j:46122), https://doi.org/10.1017/is008001012jkt041
  • [6] Marius Dadarlat, Continuous fields of $ C^*$-algebras over finite dimensional spaces, Adv. Math. 222 (2009), no. 5, 1850-1881. MR 2555914 (2010j:46102), https://doi.org/10.1016/j.aim.2009.06.019
  • [7] Marius Dădărlat and Søren Eilers, The Bockstein map is necessary, Canad. Math. Bull. 42 (1999), no. 3, 274-284. MR 1703687 (2000d:46070), https://doi.org/10.4153/CMB-1999-033-0
  • [8] Marius Dadarlat and George A. Elliott, One-parameter continuous fields of Kirchberg algebras, Comm. Math. Phys. 274 (2007), no. 3, 795-819. MR 2328913 (2009f:46075), https://doi.org/10.1007/s00220-007-0298-z
  • [9] Marius Dadarlat and Terry A. Loring, A universal multicoefficient theorem for the Kasparov groups, Duke Math. J. 84 (1996), no. 2, 355-377. MR 1404333 (97f:46109), https://doi.org/10.1215/S0012-7094-96-08412-4
  • [10] Marius Dadarlat and Ralf Meyer, E-theory for $ {\rm C}^*$-algebras over topological spaces, J. Funct. Anal. 263 (2012), no. 1, 216-247. MR 2920847, https://doi.org/10.1016/j.jfa.2012.03.022
  • [11] Marius Dadarlat and Cornel Pasnicu, Continuous fields of Kirchberg $ C^*$-algebras, J. Funct. Anal. 226 (2005), no. 2, 429-451. MR 2160103 (2006g:46098), https://doi.org/10.1016/j.jfa.2005.01.005
  • [12] Søren Eilers, Gunnar Restorff, and Efren Ruiz, Automorphisms of Cuntz-Krieger algebras (2013), available at arXiv:math/1309.1070.
  • [13] Søren Eilers, Gunnar Restorff, and Efren Ruiz, Non-splitting in Kirchberg's ideal-related $ KK$-theory, Canad. Math. Bull. 54 (2011), no. 1, 68-81. MR 2797969 (2012c:19004), https://doi.org/10.4153/CMB-2010-083-7
  • [14] Ilan Hirshberg, Mikael Rørdam, and Wilhelm Winter, $ \mathcal {C}_0(X)$-algebras, stability and strongly self-absorbing $ C^*$-algebras, Math. Ann. 339 (2007), no. 3, 695-732. MR 2336064 (2008j:46040), https://doi.org/10.1007/s00208-007-0129-8
  • [15] Eberhard Kirchberg, Das nicht-kommutative Michael-Auswahlprinzip und die Klassifikation nicht-einfacher Algebren, $ C^*$-algebras (Münster, 1999) Springer, Berlin, 2000, pp. 92-141 (German, with English summary). MR 1796912 (2001m:46161)
  • [16] Eberhard Kirchberg and Mikael Rørdam, Non-simple purely infinite $ C^\ast $-algebras, Amer. J. Math. 122 (2000), no. 3, 637-666. MR 1759891 (2001k:46088)
  • [17] Eberhard Kirchberg and Mikael Rørdam, Infinite non-simple $ C^*$-algebras: absorbing the Cuntz algebras $ \mathcal {O}_\infty $, Adv. Math. 167 (2002), no. 2, 195-264. MR 1906257 (2003k:46080), https://doi.org/10.1006/aima.2001.2041
  • [18] Ralf Meyer and Ryszard Nest, $ {\rm C}^*$-algebras over topological spaces: filtrated K-theory, Canad. J. Math. 64 (2012), no. 2, 368-408. MR 2953205, https://doi.org/10.4153/CJM-2011-061-x
  • [19] Ralf Meyer and Ryszard Nest, $ C^*$-algebras over topological spaces: the bootstrap class, Münster J. Math. 2 (2009), 215-252. MR 2545613 (2011a:46105)
  • [20] Gunnar Restorff, Classification of Non-Simple $ \textup C^*$-Algebras, Ph.D. Thesis, 2008.
  • [21] Claus Michael Ringel and Markus Schmidmeier, Submodule categories of wild representation type, J. Pure Appl. Algebra 205 (2006), no. 2, 412-422. MR 2203624 (2006i:16025), https://doi.org/10.1016/j.jpaa.2005.07.002
  • [22] Mikael Rørdam, Stable $ C^*$-algebras, Operator algebras and applications, Adv. Stud. Pure Math., vol. 38, Math. Soc. Japan, Tokyo, 2004, pp. 177-199.
  • [23] Jonathan Rosenberg and Claude Schochet, The Künneth theorem and the universal coefficient theorem for Kasparov's generalized $ K$-functor, Duke Math. J. 55 (1987), no. 2, 431-474. MR 894590 (88i:46091), https://doi.org/10.1215/S0012-7094-87-05524-4

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 46L35, 46L80, 19K35, 46M20

Retrieve articles in all journals with MSC (2010): 46L35, 46L80, 19K35, 46M20


Additional Information

Rasmus Bentmann
Affiliation: Mathematisches Institut, Georg-August Universität Göttingen, Bunsenstraße 3–5, 37073 Göttingen, Germany
Email: rbentma@uni-math.gwdg.de

Marius Dadarlat
Affiliation: Department of Mathematics, Purdue University, 150 N. University Street, West Lafayette, Indiana 47907-2067
Email: mdd@math.purdue.edu

DOI: https://doi.org/10.1090/proc12742
Keywords: Kirchberg algebras, continuous fields, $K$-theory
Received by editor(s): November 4, 2013
Published electronically: April 16, 2015
Additional Notes: The first author was supported by the Danish National Research Foundation through the Centre for Symmetry and Deformation (DNRF92) and by the Marie Curie Research Training Network EU-NCG
The second author was partially supported by NSF grant #DMS–1101305
Communicated by: Marius Junge
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society