Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Some hyperbolic three-manifolds that bound geometrically


Authors: Alexander Kolpakov, Bruno Martelli and Steven Tschantz
Journal: Proc. Amer. Math. Soc. 143 (2015), 4103-4111
MSC (2010): Primary 57N16; Secondary 52B11, 52C45
DOI: https://doi.org/10.1090/proc/12520
Published electronically: April 6, 2015
Erratum: Proc. Amer. Math. Soc. 144 (2016) 3647-3648.
MathSciNet review: 3359598
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A closed connected hyperbolic $ n$-manifold bounds geometrically if it is isometric to the geodesic boundary of a compact hyperbolic $ (n+1)$-manifold. A. Reid and D. Long have shown by arithmetic methods the existence of infinitely many manifolds that bound geometrically in every dimension.

We construct here infinitely many explicit examples in dimension $ n=3$ using right-angled dodecahedra and 120-cells and a simple colouring technique introduced by M. Davis and T. Januszkiewicz. Namely, for every $ k\geqslant 1$, we build an orientable compact closed 3-manifold tessellated by $ 16k$ right-angled dodecahedra that bounds a 4-manifold tessellated by $ 32k$ right-angled 120-cells.

A notable feature of this family is that the ratio between the volumes of the 4-manifolds and their boundary components is constant and, in particular, bounded.


References [Enhancements On Off] (What's this?)

  • [1] E.M. Andreev, On convex polyhedra in Lobacevskiĭ space, Math. USSR Sb. 10 (1970), 413-440.
  • [2] Michael W. Davis, The geometry and topology of Coxeter groups, London Mathematical Society Monographs Series, vol. 32, Princeton University Press, Princeton, NJ, 2008. MR 2360474 (2008k:20091)
  • [3] Michael W. Davis and Tadeusz Januszkiewicz, Convex polytopes, Coxeter orbifolds and torus actions, Duke Math. J. 62 (1991), no. 2, 417-451. MR 1104531 (92i:52012), https://doi.org/10.1215/S0012-7094-91-06217-4
  • [4] F. Thomas Farrell and Smilka Zdravkovska, Do almost flat manifolds bound?, Michigan Math. J. 30 (1983), no. 2, 199-208. MR 718265 (85j:57059), https://doi.org/10.1307/mmj/1029002850
  • [5] S. Fisk, Coloring the $ 600$-cell, arXiv:0802.2533
  • [6] Anne Garrison and Richard Scott, Small covers of the dodecahedron and the 120-cell, Proc. Amer. Math. Soc. 131 (2003), no. 3, 963-971. MR 1937435 (2003h:57018), https://doi.org/10.1090/S0002-9939-02-06577-2
  • [7] M. Gromov, Manifolds of negative curvature, J. Differential Geom. 13 (1978), no. 2, 223-230. MR 540941 (80h:53040)
  • [8] M. Gromov, Almost flat manifolds, J. Differential Geom. 13 (1978), no. 2, 231-241. MR 540942 (80h:53041)
  • [9] I. V. Izmestev, Three-dimensional manifolds defined by a coloring of the faces of a simple polytope, Mat. Zametki 69 (2001), no. 3, 375-382 (Russian, with Russian summary); English transl., Math. Notes 69 (2001), no. 3-4, 340-346. MR 1846836 (2002g:57005), https://doi.org/10.1023/A:1010231424507
  • [10] Alexander Kolpakov and Bruno Martelli, Hyperbolic four-manifolds with one cusp, Geom. Funct. Anal. 23 (2013), no. 6, 1903-1933. MR 3132905, https://doi.org/10.1007/s00039-013-0247-2
  • [11] D. D. Long and A. W. Reid, On the geometric boundaries of hyperbolic $ 4$-manifolds, Geom. Topol. 4 (2000), 171-178 (electronic). MR 1769269 (2001e:57037), https://doi.org/10.2140/gt.2000.4.171
  • [12] D. D. Long and A. W. Reid, All flat manifolds are cusps of hyperbolic orbifolds, Algebr. Geom. Topol. 2 (2002), 285-296 (electronic). MR 1917053 (2003e:57029), https://doi.org/10.2140/agt.2002.2.285
  • [13] D. D. Long and A. W. Reid, Constructing hyperbolic manifolds which bound geometrically, Math. Res. Lett. 8 (2001), no. 4, 443-455. MR 1849261 (2002f:57073), https://doi.org/10.4310/MRL.2001.v8.n4.a5
  • [14] D. B. McReynolds, Controlling manifold covers of orbifolds, Math. Res. Lett. 16 (2009), no. 4, 651-662. MR 2525031 (2010i:57042), https://doi.org/10.4310/MRL.2009.v16.n4.a8
  • [15] D. B. McReynolds, Alan W. Reid, and Matthew Stover, Collisions at infinity in hyperbolic manifolds, Math. Proc. Cambridge Philos. Soc. 155 (2013), no. 3, 459-463. MR 3118413, https://doi.org/10.1017/S0305004113000364
  • [16] Hisashi Nakayama and Yasuzo Nishimura, The orientability of small covers and coloring simple polytopes, Osaka J. Math. 42 (2005), no. 1, 243-256. MR 2132014 (2006a:57023)
  • [17] Barbara E. Nimershiem, All flat three-manifolds appear as cusps of hyperbolic four-manifolds, Topology Appl. 90 (1998), no. 1-3, 109-133. MR 1648306 (99i:57029), https://doi.org/10.1016/S0166-8641(98)00183-7
  • [18] Leonid Potyagailo and Ernest Vinberg, On right-angled reflection groups in hyperbolic spaces, Comment. Math. Helv. 80 (2005), no. 1, 63-73. MR 2130566 (2006a:20076), https://doi.org/10.4171/CMH/4
  • [19] John G. Ratcliffe and Steven T. Tschantz, Gravitational instantons of constant curvature, Classical Quantum Gravity 15 (1998), no. 9, 2613-2627. Topology of the Universe Conference (Cleveland, OH, 1997). MR 1649662 (99k:53127), https://doi.org/10.1088/0264-9381/15/9/009
  • [20] John G. Ratcliffe and Steven T. Tschantz, On the growth of the number of hyperbolic gravitational instantons with respect to volume, Classical Quantum Gravity 17 (2000), no. 15, 2999-3007. MR 1777000 (2001g:83065), https://doi.org/10.1088/0264-9381/17/15/310
  • [21] Matthew Stover, On the number of ends of rank one locally symmetric spaces, Geom. Topol. 17 (2013), no. 2, 905-924. MR 3070517, https://doi.org/10.2140/gt.2013.17.905
  • [22] S. T. Tschantz, Mathematica program code available on-line at the author's web-page
    http://www.math.vanderbilt.edu/$ \sim $tschantz/geosubmanincovers120cell.nb
  • [23] A. Yu. Vesnin, Three-dimensional hyperbolic manifolds of Löbell type, Sibirsk. Mat. Zh. 28 (1987), no. 5, 50-53 (Russian). MR 924975 (89f:57022)
  • [24] A. Yu. Vesnin, Three-dimensional hyperbolic manifolds with a common fundamental polyhedron, Mat. Zametki 49 (1991), no. 6, 29-32, 157 (Russian); English transl., Math. Notes 49 (1991), no. 5-6, 575-577. MR 1135512 (92i:57017), https://doi.org/10.1007/BF01156579
  • [25] Geometry. II, Encyclopaedia of Mathematical Sciences, vol. 29, Springer-Verlag, Berlin, 1993. Spaces of constant curvature; A translation of Geometriya. II, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1988; Translation by V. Minachin [V. V. Minakhin]; Translation edited by È. B. Vinberg. MR 1254931 (94f:53002)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 57N16, 52B11, 52C45

Retrieve articles in all journals with MSC (2010): 57N16, 52B11, 52C45


Additional Information

Alexander Kolpakov
Affiliation: Department of Mathematics, University of Toronto, 40 St. George Street, Toronto Ontario, M5S 2E4, Canada
Email: kolpakov.alexander@gmail.com

Bruno Martelli
Affiliation: Dipartimento di Matematica “Tonelli”, Università di Pisa, Largo Pontecorvo 5, 56127 Pisa, Italy
Email: martelli@dm.unipi.it

Steven Tschantz
Affiliation: Department of Mathematics, Vanderbilt University, 1326 Stevenson Center, Nashville, Tennessee 37240
Email: steven.tschantz@vanderbilt.edu

DOI: https://doi.org/10.1090/proc/12520
Keywords: 4-manifold, gravitational instanton, Coxeter group
Received by editor(s): November 12, 2013
Received by editor(s) in revised form: April 3, 2014, and April 4, 2014
Published electronically: April 6, 2015
Additional Notes: The first author was supported by the SNSF researcher scholarship P300P2-151316.
The second author was supported by the Italian FIRB project “Geometry and topology of low-dimensional manifolds”, RBFR10GHHH
Communicated by: Kevin Whyte
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society