Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Rigidity of scattering lengths and travelling times for disjoint unions of strictly convex bodies


Authors: Lyle Noakes and Luchezar Stoyanov
Journal: Proc. Amer. Math. Soc. 143 (2015), 3879-3893
MSC (2010): Primary 37D20, 37D40, 53D25, 58J50
DOI: https://doi.org/10.1090/S0002-9939-2015-12531-2
Published electronically: March 18, 2015
MathSciNet review: 3359579
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Obstacles $ K$ and $ L$ in $ \mathbb{R}^d$ ($ d\geq 2$) are considered that are finite disjoint unions of strictly convex domains with $ C^3$ boundaries. We show that if $ K$ and $ L$ have (almost) the same scattering length spectrum, or (almost) the same travelling times, then $ K=L$.


References [Enhancements On Off] (What's this?)

  • [F] V. V. Fedorchuk, The fundamentals of dimension theory, In: General Topology I, A.V. Arhagel'skii and L. S. Pontryagin (Eds.), Encyclopedia of Mathematical Sciences Vol. 17, Springer-Verlag, 1990.
  • [G] V. Guillemin, Sojourn times and asymptotic properties of the scattering matrix, Proceedings of the Oji Seminar on Algebraic Analysis and the RIMS Symposium on Algebraic Analysis (Kyoto Univ., Kyoto, 1976), 1976/77 supplement, pp. 69-88. MR 0448453 (56 #6759)
  • [Hi] Morris W. Hirsch, Differential topology, Springer-Verlag, New York-Heidelberg, 1976. Graduate Texts in Mathematics, No. 33. MR 0448362 (56 #6669)
  • [H] L. Hörmander, The analysis of linear partial differential operators, vol. III. Berlin: Springer, 1985.
  • [LP1] Peter D. Lax and Ralph S. Phillips, Scattering theory, Pure and Applied Mathematics, Vol. 26, Academic Press, New York-London, 1967. MR 0217440 (36 #530)
  • [LP2] Peter D. Lax and Ralph S. Phillips, The scattering of sound waves by an obstacle, Comm. Pure Appl. Math. 30 (1977), no. 2, 195-233. MR 0442510 (56 #892)
  • [Ma] Andrew Majda, A representation formula for the scattering operator and the inverse problem for arbitrary bodies, Comm. Pure Appl. Math. 30 (1977), no. 2, 165-194. MR 0435625 (55 #8583)
  • [MaR] Andrew Majda and James Ralston, An analogue of Weyl's theorem for unbounded domains. I, Duke Math. J. 45 (1978), no. 1, 183-196. MR 0481639 (58 #1744)
  • [M] Richard B. Melrose, Geometric scattering theory, Stanford Lectures, Cambridge University Press, Cambridge, 1995. MR 1350074 (96k:35129)
  • [MS1] R. B. Melrose and J. Sjöstrand, Singularities of boundary value problems. I, Comm. Pure Appl. Math. 31 (1978), no. 5, 593-617. MR 0492794 (58 #11859)
  • [MS2] R. B. Melrose and J. Sjöstrand, Singularities of boundary value problems. II, Comm. Pure Appl. Math. 35 (1982), no. 2, 129-168. MR 644020 (83h:35120), https://doi.org/10.1002/cpa.3160350202
  • [NS] L. Noakes and L. Stoyanov, Travelling times in scattering by obstacles, Preprint 2014, arXiv:1404.4147 [math-ph].
  • [PS1] Vesselin M. Petkov and Luchezar N. Stoyanov, Geometry of reflecting rays and inverse spectral problems, Pure and Applied Mathematics (New York), John Wiley & Sons, Ltd., Chichester, 1992. MR 1172998 (93i:58161)
  • [PS2] Vesselin Petkov and Latchezar Stoyanov, Sojourn times of trapping rays and the behavior of the modified resolvent of the Laplacian, Ann. Inst. H. Poincaré Phys. Théor. 62 (1995), no. 1, 17-45 (English, with English and French summaries). MR 1313359 (96g:58199)
  • [Si1] Ya. Sinai, Dynamical systems with elastic reflections, Russian Math. Surveys 25 (1970), 137-190.
  • [Si2] Ya. Sinai, Development of Krylov's ideas, An addendum to the book: N.S.Krylov "Works on the foundations of statistical physics", Princeton Univ. Press, Princeton 1979, pp. 239-281.
  • [SU] Plamen Stefanov and Gunther Uhlmann, Boundary rigidity and stability for generic simple metrics, J. Amer. Math. Soc. 18 (2005), no. 4, 975-1003. MR 2163868 (2006h:53031), https://doi.org/10.1090/S0894-0347-05-00494-7
  • [SUV] P. Stefanov, G. Uhlmann and A. Vasy, Boundary rigidity with partial data, Preprint 2013, arXiv:1306.2995.
  • [St1] Latchezar Stoyanov, Exponential instability for a class of dispersing billiards, Ergodic Theory Dynam. Systems 19 (1999), no. 1, 201-226. MR 1677157 (99m:58149), https://doi.org/10.1017/S0143385799126543
  • [St2] Luchezar Stoyanov, On the scattering length spectrum for real analytic obstacles, J. Funct. Anal. 177 (2000), no. 2, 459-488. MR 1795959 (2002b:35163), https://doi.org/10.1006/jfan.2000.3645
  • [St3] Luchezar Stoyanov, Generalized Hamilton flow and Poisson relation for the scattering kernel, Ann. Sci. École Norm. Sup. (4) 33 (2000), no. 3, 361-382 (English, with English and French summaries). MR 1775186 (2001g:37120), https://doi.org/10.1016/S0012-9593(00)00115-4
  • [St4] Luchezar Stoyanov, Rigidity of the scattering length spectrum, Math. Ann. 324 (2002), no. 4, 743-771. MR 1942248 (2003j:58048), https://doi.org/10.1007/s00208-002-0358-9
  • [T] Michael E. Taylor, Grazing rays and reflection of singularities of solutions to wave equations, Comm. Pure Appl. Math. 29 (1976), no. 1, 1-38. MR 0397175 (53 #1035)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 37D20, 37D40, 53D25, 58J50

Retrieve articles in all journals with MSC (2010): 37D20, 37D40, 53D25, 58J50


Additional Information

Lyle Noakes
Affiliation: University of Western Australia, Crawley, Western Australia 6009, Australia
Email: lyle.noakes@uwa.edu.au

Luchezar Stoyanov
Affiliation: University of Western Australia, Crawley, Western Australia 6009, Australia
Email: luchezar.stoyanov@uwa.edu.au

DOI: https://doi.org/10.1090/S0002-9939-2015-12531-2
Received by editor(s): February 7, 2014
Received by editor(s) in revised form: April 28, 2014
Published electronically: March 18, 2015
Communicated by: Yingfei Yi
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society