Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Bounds on volume growth of geodesic balls for Einstein warped products

Authors: A. Barros, R. Batista and E. Ribeiro Jr.
Journal: Proc. Amer. Math. Soc. 143 (2015), 4415-4422
MSC (2010): Primary 53C25, 53C20, 53C21; Secondary 53C65
Published electronically: April 1, 2015
MathSciNet review: 3373940
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The purpose of this note is to provide some volume estimates for Einstein warped products similar to a classical result due to Calabi and Yau for complete Riemannian manifolds with nonnegative Ricci curvature. To do so, we make use of the approach of quasi-Einstein manifolds which is directly related to Einstein warped products. In particular, we present an obstruction for the existence of such a class of manifolds.

References [Enhancements On Off] (What's this?)

  • [1] D. Bakry and M. Ledoux, Sobolev inequalities and Myers's diameter theorem for an abstract Markov generator, Duke Math. J. 85 (1996), no. 1, 253-270. MR 1412446 (97h:53034),
  • [2] A. Barros and E. Ribeiro Jr., Integral formulae on quasi-Einstein manifolds and applications, Glasg. Math. J. 54 (2012), no. 1, 213-223. MR 2862399,
  • [3] Arthur L. Besse, Einstein manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 10, Springer-Verlag, Berlin, 1987. MR 867684 (88f:53087)
  • [4] E. Calabi, On manifolds with non-negative Ricci curvature II. Notices Amer. Math. Soc., 22 (1975) A205.
  • [5] Jeffrey Case, Yu-Jen Shu, and Guofang Wei, Rigidity of quasi-Einstein metrics, Differential Geom. Appl. 29 (2011), no. 1, 93-100. MR 2784291 (2012d:53124),
  • [6] Jeffrey S. Case, The nonexistence of quasi-Einstein metrics, Pacific J. Math. 248 (2010), no. 2, 277-284. MR 2741248 (2011m:53053),
  • [7] Huai-Dong Cao, Recent progress on Ricci solitons, Recent advances in geometric analysis, Adv. Lect. Math. (ALM), vol. 11, Int. Press, Somerville, MA, 2010, pp. 1-38. MR 2648937 (2011d:53061)
  • [8] Huai-Dong Cao and Detang Zhou, On complete gradient shrinking Ricci solitons, J. Differential Geom. 85 (2010), no. 2, 175-185. MR 2732975 (2011k:53040)
  • [9] Justin Corvino, Scalar curvature deformation and a gluing construction for the Einstein constraint equations, Comm. Math. Phys. 214 (2000), no. 1, 137-189. MR 1794269 (2002b:53050),
  • [10] Chenxu He, Peter Petersen, and William Wylie, On the classification of warped product Einstein metrics, Comm. Anal. Geom. 20 (2012), no. 2, 271-311. MR 2928714,
  • [11] Dong-Soo Kim and Young Ho Kim, Compact Einstein warped product spaces with nonpositive scalar curvature, Proc. Amer. Math. Soc. 131 (2003), no. 8, 2573-2576 (electronic). MR 1974657 (2004b:53063),
  • [12] Xiang-Dong Li, Liouville theorems for symmetric diffusion operators on complete Riemannian manifolds, J. Math. Pures Appl. (9) 84 (2005), no. 10, 1295-1361 (English, with English and French summaries). MR 2170766 (2006f:58046),
  • [13] Frank Morgan, Manifolds with density, Notices Amer. Math. Soc. 52 (2005), no. 8, 853-858. MR 2161354 (2006g:53044)
  • [14] Ovidiu Munteanu and Natasa Sesum, On gradient Ricci solitons, J. Geom. Anal. 23 (2013), no. 2, 539-561. MR 3023848,
  • [15] Ovidiu Munteanu and Jiaping Wang, Analysis of weighted Laplacian and applications to Ricci solitons, Comm. Anal. Geom. 20 (2012), no. 1, 55-94. MR 2903101,
  • [16] Stefano Pigola, Michele Rimoldi, and Alberto G. Setti, Remarks on non-compact gradient Ricci solitons, Math. Z. 268 (2011), no. 3-4, 777-790. MR 2818729 (2012i:53042),
  • [17] Zhongmin Qian, Estimates for weighted volumes and applications, Quart. J. Math. Oxford Ser. (2) 48 (1997), no. 190, 235-242. MR 1458581 (98e:53058),
  • [18] Michele Rimoldi, A remark on Einstein warped products, Pacific J. Math. 252 (2011), no. 1, 207-218. MR 2862148,
  • [19] Lin Feng Wang, On noncompact $ \tau $-quasi-Einstein metrics, Pacific J. Math. 254 (2011), no. 2, 449-464. MR 2900025,
  • [20] G. Wei and W. Wylie, Comparison geometry for the smooth metric measure spaces. In ICCM. Vol. II. Higher Education Press. (2007).
  • [21] Shing Tung Yau, Some function-theoretic properties of complete Riemannian manifold and their applications to geometry, Indiana Univ. Math. J. 25 (1976), no. 7, 659-670. MR 0417452 (54 #5502)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 53C25, 53C20, 53C21, 53C65

Retrieve articles in all journals with MSC (2010): 53C25, 53C20, 53C21, 53C65

Additional Information

A. Barros
Affiliation: Universidade Federal do Ceará - UFC, Departamento de Matemática, Campus do Pici, Av. Humberto Monte, Bloco 914, 60455-760-Fortaleza/CE, Brazil

R. Batista
Affiliation: Universidade Federal do Piauí - UFPI, Departamento de Matemática, Campus Petrônio Portella, 64049-550-Teresina /PI, Brazil

E. Ribeiro Jr.
Affiliation: Universidade Federal do Ceará - UFC, Departamento de Matemática, Campus do Pici, Av. Humberto Monte, Bloco 914, 60455-760-Fortaleza/CE, Brazil
Address at time of publication: Department of Mathematics, Lehigh University, Bethlehem, Pennsylvania 18015

Keywords: Quasi-Einstein manifolds, warped product, Einstein metrics, volume estimates
Received by editor(s): May 2, 2014
Received by editor(s) in revised form: May 3, 2014, and July 4, 2014
Published electronically: April 1, 2015
Additional Notes: The first and second authors were partially supported by grants from CNPq/Brazil
The third author was partially supported by grants from PJP-FUNCAP/Brazil and CNPq/Brazil
Communicated by: Lei Ni
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society