Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Divisibility of Weil sums of binomials


Author: Daniel J. Katz
Journal: Proc. Amer. Math. Soc. 143 (2015), 4623-4632
MSC (2010): Primary 11T23, 11L05, 11L07; Secondary 11T71
DOI: https://doi.org/10.1090/proc/12687
Published electronically: April 1, 2015
MathSciNet review: 3391022
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Consider the Weil sum $ W_{F,d}(u)=\sum _{x \in F} \psi (x^d+u x)$, where $ F$ is a finite field of characteristic $ p$, $ \psi $ is the canonical additive character of $ F$, $ d$ is coprime to $ \vert F^*\vert$, and $ u \in F^*$. We say that $ W_{F,d}(u)$ is three-valued when it assumes precisely three distinct values as $ u$ runs through $ F^*$: this is the minimum number of distinct values in the nondegenerate case, and three-valued $ W_{F,d}$ are rare and desirable. When $ W_{F,d}$ is three-valued, we give a lower bound on the $ p$-adic valuation of the values. This enables us to prove the characteristic $ 3$ case of a 1976 conjecture of Helleseth: when $ p=3$ and $ [F:{\mathbb{F}}_3]$ is a power of $ 2$, we show that $ W_{F,d}$ cannot be three-valued.


References [Enhancements On Off] (What's this?)

  • [1] Yves Aubry, Daniel J. Katz, and Philippe Langevin, Cyclotomy of Weil sums of binomials, arXiv:1312.3889 (2013).
  • [2] Emrah ÇakÇak and Philippe Langevin, Power permutations in dimension 32, Sequences and their applications--SETA 2010, Lecture Notes in Comput. Sci., vol. 6338, Springer, Berlin, 2010, pp. 181-187. MR 2830722 (2012i:05005), https://doi.org/10.1007/978-3-642-15874-2_14
  • [3] A. R. Calderbank, Gary McGuire, Bjorn Poonen, and Michael Rubinstein, On a conjecture of Helleseth regarding pairs of binary $ m$-sequences, IEEE Trans. Inform. Theory 42 (1996), no. 3, 988-990. MR 1445885 (97m:94010), https://doi.org/10.1109/18.490561
  • [4] L. Carlitz, A note on exponential sums, Math. Scand. 42 (1978), no. 1, 39-48. MR 500144 (80d:12017)
  • [5] L. Carlitz, Explicit evaluation of certain exponential sums, Math. Scand. 44 (1979), no. 1, 5-16. MR 544577 (80j:10042)
  • [6] Pascale Charpin, Cyclic codes with few weights and Niho exponents, J. Combin. Theory Ser. A 108 (2004), no. 2, 247-259. MR 2098843 (2005h:94075), https://doi.org/10.1016/j.jcta.2004.07.001
  • [7] Todd Cochrane and Christopher Pinner, Stepanov's method applied to binomial exponential sums, Q. J. Math. 54 (2003), no. 3, 243-255. MR 2013138 (2004k:11136), https://doi.org/10.1093/qjmath/54.3.243
  • [8] Todd Cochrane and Christopher Pinner, Explicit bounds on monomial and binomial exponential sums, Q. J. Math. 62 (2011), no. 2, 323-349. MR 2805207 (2012d:11171), https://doi.org/10.1093/qmath/hap041
  • [9] Robert S. Coulter, Further evaluations of Weil sums, Acta Arith. 86 (1998), no. 3, 217-226. MR 1655980 (99i:11113)
  • [10] H. Davenport and H. Heilbronn, On an Exponential Sum, Proc. London Math. Soc. S2-41, no. 6, 449. MR 1576618, https://doi.org/10.1112/plms/s2-41.6.449
  • [11] Tao Feng, On cyclic codes of length $ 2^{2^r}-1$ with two zeros whose dual codes have three weights, Des. Codes Cryptogr. 62 (2012), no. 3, 253-258. MR 2886276 (2012m:94317), https://doi.org/10.1007/s10623-011-9514-0
  • [12] Richard A. Games, The geometry of $ m$-sequences: three-valued crosscorrelations and quadrics in finite projective geometry, SIAM J. Algebraic Discrete Methods 7 (1986), no. 1, 43-52. MR 819704 (87d:51016), https://doi.org/10.1137/0607005
  • [13] Tor Helleseth, Some results about the cross-correlation function between two maximal linear sequences, Discrete Math. 16 (1976), no. 3, 209-232. MR 0429323 (55 #2341)
  • [14] A. A. Karacuba, Estimates of complete trigonometric sums, Mat. Zametki 1 (1967), 199-208 (Russian). MR 0205941 (34 #5766)
  • [15] Daniel J. Katz, Weil sums of binomials, three-level cross-correlation, and a conjecture of Helleseth, J. Combin. Theory Ser. A 119 (2012), no. 8, 1644-1659. MR 2946379, https://doi.org/10.1016/j.jcta.2012.05.003
  • [16] Nicholas Katz and Ron Livné, Sommes de Kloosterman et courbes elliptiques universelles en caractéristiques $ 2$ et $ 3$, C. R. Acad. Sci. Paris Sér. I Math. 309 (1989), no. 11, 723-726 (French, with English summary). MR 1054286 (91e:11066)
  • [17] H. D. Kloosterman, On the representation of numbers in the form $ ax^2+by^2+cz^2+dt^2$, Acta Math. 49 (1927), no. 3-4, 407-464. MR 1555249, https://doi.org/10.1007/BF02564120
  • [18] Gilles Lachaud and Jacques Wolfmann, Sommes de Kloosterman, courbes elliptiques et codes cycliques en caractéristique $ 2$, C. R. Acad. Sci. Paris Sér. I Math. 305 (1987), no. 20, 881-883 (French, with English summary). MR 925289 (89c:14031)
  • [19] Rudolf Lidl and Harald Niederreiter, Finite fields, 2nd ed., Encyclopedia of Mathematics and its Applications, vol. 20, Cambridge University Press, Cambridge, 1997. With a foreword by P. M. Cohn. MR 1429394 (97i:11115)
  • [20] Gary McGuire, On certain 3-weight cyclic codes having symmetric weights and a conjecture of Helleseth, Sequences and their applications (Bergen, 2001) Discrete Math. Theor. Comput. Sci. (Lond.), Springer, London, 2002, pp. 281-295. MR 1916139 (2003e:94104)
  • [21] I. Vinogradov, Some trigonometrical polynomes and their applications, C. R. Acad. Sci. URSS (N.S.) (1933), no. 6, 254-255.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 11T23, 11L05, 11L07, 11T71

Retrieve articles in all journals with MSC (2010): 11T23, 11L05, 11L07, 11T71


Additional Information

Daniel J. Katz
Affiliation: Department of Mathematics, California State University, Northridge, California 91330-8313

DOI: https://doi.org/10.1090/proc/12687
Keywords: Weil sum, character sum, finite field
Received by editor(s): July 29, 2014
Published electronically: April 1, 2015
Communicated by: Matthew A. Papanikolas
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society