Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Infinite log-concavity for polynomial Pólya frequency sequences


Authors: Petter Brändén and Matthew Chasse
Journal: Proc. Amer. Math. Soc. 143 (2015), 5147-5158
MSC (2010): Primary 05A20, 26C10, 05E99, 30C15
DOI: https://doi.org/10.1090/proc/12654
Published electronically: May 22, 2015
MathSciNet review: 3411133
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: McNamara and Sagan conjectured that if $ a_0,a_1, a_2, \ldots $ is a Pólya frequency (PF) sequence, then so is $ a_0^2, a_1^2 -a_0a_2, a_2^2-a_1a_3, \ldots $. We prove this conjecture for a natural class of PF-sequences which are interpolated by polynomials. In particular, this proves that the columns of Pascal's triangle are infinitely log-concave, as conjectured by McNamara and Sagan. We also give counterexamples to the first mentioned conjecture.

Our methods provide families of nonlinear operators that preserve the property of having only real and nonpositive zeros.


References [Enhancements On Off] (What's this?)

  • [1] Michael Aissen, I. J. Schoenberg, and A. M. Whitney, On the generating functions of totally positive sequences. I, J. Analyse Math. 2 (1952), 93-103 (English, with Hebrew summary). MR 0053174 (14,732d)
  • [2] George Boros and Victor Moll, Irresistible integrals, Cambridge University Press, Cambridge, 2004. Symbolics, analysis and experiments in the evaluation of integrals. MR 2070237 (2005b:00001)
  • [3] Petter Brändén, Iterated sequences and the geometry of zeros, J. Reine Angew. Math. 658 (2011), 115-131. MR 2831515 (2012g:30013), https://doi.org/10.1515/CRELLE.2011.063
  • [4] Petter Brändén, On linear transformations preserving the Pólya frequency property, Trans. Amer. Math. Soc. 358 (2006), no. 8, 3697-3716 (electronic). MR 2218995 (2007a:05007), https://doi.org/10.1090/S0002-9947-06-03856-6
  • [5] Petter Brändén, Counterexamples to the Neggers-Stanley conjecture, Electron. Res. Announc. Amer. Math. Soc. 10 (2004), 155-158 (electronic). MR 2119757 (2005j:06002), https://doi.org/10.1090/S1079-6762-04-00140-4
  • [6] Francesco Brenti, Unimodal, log-concave and Pólya frequency sequences in combinatorics, Mem. Amer. Math. Soc. 81 (1989), no. 413, viii+106. MR 963833 (90d:05014), https://doi.org/10.1090/memo/0413
  • [7] W. Y. C. Chen, D. Q. J. Dou, A. L. Yang, Brändén's conjectures on the Boros-Moll polynomials, Int. Math. Res. Not. IMRN. 20, (2013), 4819-4828.
  • [8] Thomas Craven and George Csordas, Jensen polynomials and the Turán and Laguerre inequalities, Pacific J. Math. 136 (1989), no. 2, 241-260. MR 978613 (90a:26035)
  • [9] Thomas Craven and George Csordas, Iterated Laguerre and Turán inequalities, JIPAM. J. Inequal. Pure Appl. Math. 3 (2002), no. 3, Article 39, 14 pp. (electronic). MR 1917798 (2003d:30006)
  • [10] Albert Edrei, On the generating functions of totally positive sequences. II, J. Analyse Math. 2 (1952), 104-109 (English, with Hebrew summary). MR 0053175 (14,732e)
  • [11] Lukasz Grabarek, A new class of non-linear stability preserving operators, Complex Var. Elliptic Equ. 58 (2013), no. 7, 887-898. MR 3170669, https://doi.org/10.1080/17476933.2011.586696
  • [12] D. B. Karp, Positivity of Toeplitz determinants formed by rising factorial series and properties of related polynomials, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 404 (2012), no. Analiticheskaya Teoriya Chisel i Teoriya Funktsii. 27, 184-198, 262-263 (English, with English and Russian summaries); English transl., J. Math. Sci. (N. Y.) 193 (2013), no. 1, 106-114. MR 3029600
  • [13] B. Ja. Levin, Distribution of zeros of entire functions, American Mathematical Society, Providence, R.I., 1964. MR 0156975 (28 #217)
  • [14] Peter R. W. McNamara and Bruce E. Sagan, Infinite log-concavity: developments and conjectures, Adv. in Appl. Math. 44 (2010), no. 1, 1-15. MR 2552652 (2010k:05017), https://doi.org/10.1016/j.aam.2009.03.001
  • [15] Q. I. Rahman and G. Schmeisser, Analytic theory of polynomials, London Mathematical Society Monographs. New Series, vol. 26, The Clarendon Press, Oxford University Press, Oxford, 2002. MR 1954841 (2004b:30015)
  • [16] Earl D. Rainville, Special functions, The Macmillan Co., New York, 1960. MR 0107725 (21 #6447)
  • [17] John Riordan, Combinatorial identities, John Wiley & Sons, Inc., New York-London-Sydney, 1968. MR 0231725 (38 #53)
  • [18] Richard P. Stanley, Enumerative combinatorics. Vol. 2, Cambridge Studies in Advanced Mathematics, vol. 62, Cambridge University Press, Cambridge, 1999. With a foreword by Gian-Carlo Rota and appendix 1 by Sergey Fomin. MR 1676282 (2000k:05026)
  • [19] John R. Stembridge, Counterexamples to the poset conjectures of Neggers, Stanley, and Stembridge, Trans. Amer. Math. Soc. 359 (2007), no. 3, 1115-1128 (electronic). MR 2262844 (2007i:06007), https://doi.org/10.1090/S0002-9947-06-04271-1
  • [20] Otto Szász, On sequences of polynomials and the distribution of their zeros, Bull. Amer. Math. Soc. 49 (1943), 377-383. MR 0008274 (4,273c)
  • [21] David G. Wagner, Total positivity of Hadamard products, J. Math. Anal. Appl. 163 (1992), no. 2, 459-483. MR 1145841 (93f:15020), https://doi.org/10.1016/0022-247X(92)90261-B
  • [22] Rintaro Yoshida, On some questions of Fisk and Brändén, Complex Var. Elliptic Equ. 58 (2013), no. 7, 933-945. MR 3170673, https://doi.org/10.1080/17476933.2011.603418
  • [23] Yaming Yu, Confirming two conjectures of Su and Wang on binomial coefficients, Adv. in Appl. Math. 43 (2009), no. 4, 317-322. MR 2553542 (2010m:05015), https://doi.org/10.1016/j.aam.2008.12.004

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 05A20, 26C10, 05E99, 30C15

Retrieve articles in all journals with MSC (2010): 05A20, 26C10, 05E99, 30C15


Additional Information

Petter Brändén
Affiliation: Department of Mathematics, Royal Institute of Technology, SE-100 44 Stockholm, Sweden
Email: pbranden@kth.se

Matthew Chasse
Affiliation: Department of Mathematics, Royal Institute of Technology, SE-100 44 Stockholm, Sweden
Email: chasse@kth.se

DOI: https://doi.org/10.1090/proc/12654
Keywords: Log-concavity, infinite log-concavity, real zeros, P\'olya frequency sequence
Received by editor(s): June 23, 2014
Received by editor(s) in revised form: October 14, 2014
Published electronically: May 22, 2015
Additional Notes: The first author is a Royal Swedish Academy of Sciences Research Fellow supported by a grant from the Knut and Alice Wallenberg Foundation. The research is also supported by the Göran Gustafsson Foundation.
Communicated by: Patricia Hersh
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society