Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

Request Permissions   Purchase Content 
 
 

 

Hardy-type inequalities for vector fields with vanishing tangential components


Authors: Xingfei Xiang and Zhibing Zhang
Journal: Proc. Amer. Math. Soc. 143 (2015), 5369-5379
MSC (2010): Primary 26D10, 42B20, 46E40
DOI: https://doi.org/10.1090/S0002-9939-2015-12668-8
Published electronically: January 23, 2015
MathSciNet review: 3411152
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This note studies Hardy-type inequalities for vector fields with the $ L^1$ norm of the operator $ \operatorname {curl}$. In contrast to the well-known results in the whole space for the divergence-free vector fields, we generalize the Hardy-type inequalities to bounded domains and to non-divergence-free vector fields with tangential components vanishing on the boundary.


References [Enhancements On Off] (What's this?)

  • [1] Hugo Beirão da Veiga and Luigi C. Berselli, Navier-Stokes equations: Green's matrices, vorticity direction, and regularity up to the boundary, J. Differential Equations 246 (2009), no. 2, 597-628. MR 2468730 (2010h:35291), https://doi.org/10.1016/j.jde.2008.02.043
  • [2] Jean Bourgain and Haïm Brezis, On the equation $ {\rm div}\, Y=f$ and application to control of phases, J. Amer. Math. Soc. 16 (2003), no. 2, 393-426 (electronic). MR 1949165 (2004d:35032), https://doi.org/10.1090/S0894-0347-02-00411-3
  • [3] Jean Bourgain and Haïm Brezis, New estimates for the Laplacian, the div-curl, and related Hodge systems, C. R. Math. Acad. Sci. Paris 338 (2004), no. 7, 539-543 (English, with English and French summaries). MR 2057026 (2004m:26018), https://doi.org/10.1016/j.crma.2003.12.031
  • [4] Jean Bourgain and Haïm Brezis, New estimates for elliptic equations and Hodge type systems, J. Eur. Math. Soc. (JEMS) 9 (2007), no. 2, 277-315. MR 2293957 (2009h:35062), https://doi.org/10.4171/JEMS/80
  • [5] Pierre Bousquet and Petru Mironescu, An elementary proof of an inequality of Maz'ya involving $ L^1$ vector fields, Nonlinear elliptic partial differential equations, Contemp. Math., vol. 540, Amer. Math. Soc., Providence, RI, 2011, pp. 59-63. MR 2807409 (2012i:42010), https://doi.org/10.1090/conm/540/10659
  • [6] Jean Van Schaftingen, Limiting Sobolev inequalities for vector fields and canceling linear differential operators, J. Eur. Math. Soc. (JEMS) 15 (2013), no. 3, 877-921. MR 3085095, https://doi.org/10.4171/JEMS/380
  • [7] Haïm Brezis and Jean Van Schaftingen, Boundary estimates for elliptic systems with $ L^1$-data, Calc. Var. Partial Differential Equations 30 (2007), no. 3, 369-388. MR 2332419 (2008m:35063), https://doi.org/10.1007/s00526-007-0094-9
  • [8] D. Gilbarg and N. Trudinger, Elliptic partial differential equations of second order, Springer-Verlag, Berlin and New York, 1998. MR 1814364 (2001k:35004)
  • [9] Hideo Kozono and Taku Yanagisawa, $ L^r$-variational inequality for vector fields and the Helmholtz-Weyl decomposition in bounded domains, Indiana Univ. Math. J. 58 (2009), no. 4, 1853-1920. MR 2542982 (2011b:58004), https://doi.org/10.1512/iumj.2009.58.3605
  • [10] Loredana Lanzani and Elias M. Stein, A note on div curl inequalities, Math. Res. Lett. 12 (2005), no. 1, 57-61. MR 2122730 (2005m:58001), https://doi.org/10.4310/MRL.2005.v12.n1.a6
  • [11] Vladimir Maz'ya, Estimates for differential operators of vector analysis involving $ L^1$-norm, J. Eur. Math. Soc. (JEMS) 12 (2010), no. 1, 221-240. MR 2578609 (2011b:42050), https://doi.org/10.4171/JEMS/195
  • [12] Irina Mitrea and Marius Mitrea, A remark on the regularity of the div-curl system, Proc. Amer. Math. Soc. 137 (2009), no. 5, 1729-1733. MR 2470831 (2009j:58002), https://doi.org/10.1090/S0002-9939-08-09671-8
  • [13] V. A. Solonnikov, The Green's matrices for elliptic boundary value problems, I, Trudy Mat. Inst. Steklova 110 (1970), 107-145. MR 0289935 (44:7120)
  • [14] V. A. Solonnikov, The Green's matrices for elliptic boundary value problems. II (Russian), Boundary value problems of mathematical physics, 7, Trudy Mat. Inst. Steklov. 116 (1971), 181-216, 237. MR 0364854 (51 #1108)
  • [15] Jean Van Schaftingen, Estimates for $ L^1$-vector fields, C. R. Math. Acad. Sci. Paris 339 (2004), no. 3, 181-186 (English, with English and French summaries). MR 2078071 (2005b:35018), https://doi.org/10.1016/j.crma.2004.05.013
  • [16] Jean Van Schaftingen, Limiting fractional and Lorentz space estimates of differential forms, Proc. Amer. Math. Soc. 138 (2010), no. 1, 235-240. MR 2550188 (2010i:46064), https://doi.org/10.1090/S0002-9939-09-10005-9
  • [17] Wolf von Wahl, Estimating $ \nabla u$ by $ {\rm div}\, u$ and $ {\rm curl}\, u$, Math. Methods Appl. Sci. 15 (1992), no. 2, 123-143. MR 1149300 (93b:26024), https://doi.org/10.1002/mma.1670150206
  • [18] Xingfei Xiang, $ L^{3/2}$-estimates of vector fields with $ L^1$ curl in a bounded domain, Calc. Var. Partial Differential Equations 46 (2013), no. 1-2, 55-74. MR 3016501, https://doi.org/10.1007/s00526-011-0473-0

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 26D10, 42B20, 46E40

Retrieve articles in all journals with MSC (2010): 26D10, 42B20, 46E40


Additional Information

Xingfei Xiang
Affiliation: Department of Mathematics, Tongji University, Shanghai 200092, People’s Republic of China
Email: xiangxingfei@126.com

Zhibing Zhang
Affiliation: Department of Mathematics, East China Normal University, Shanghai 200241, People’s Republic of China
Email: zhibingzhang29@126.com

DOI: https://doi.org/10.1090/S0002-9939-2015-12668-8
Keywords: $\operatorname{div}$, $\operatorname{curl}$, Hardy-type inequality, $L^1$ data
Received by editor(s): March 24, 2014
Received by editor(s) in revised form: September 2, 2014, and October 31, 2014
Published electronically: January 23, 2015
Communicated by: Jeremy Tyson
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society