Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Positivity of the renormalized volume of almost-Fuchsian hyperbolic $ 3$-manifolds


Authors: Corina Ciobotaru and Sergiu Moroianu
Journal: Proc. Amer. Math. Soc. 144 (2016), 151-159
MSC (2010): Primary 30F60
DOI: https://doi.org/10.1090/proc/12682
Published electronically: June 9, 2015
MathSciNet review: 3415585
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that the renormalized volume of almost-Fuchsian hyperbolic $ 3$-manifolds is non-negative, with equality only for Fuchsian manifolds.


References [Enhancements On Off] (What's this?)

  • [1] Pierre Albin, Renormalizing curvature integrals on Poincaré-Einstein manifolds, Adv. Math. 221 (2009), no. 1, 140-169. MR 2509323 (2010i:53072), https://doi.org/10.1016/j.aim.2008.12.002
  • [2] Jeffrey F. Brock, The Weil-Petersson metric and volumes of 3-dimensional hyperbolic convex cores, J. Amer. Math. Soc. 16 (2003), no. 3, 495-535 (electronic). MR 1969203 (2004c:32027), https://doi.org/10.1090/S0894-0347-03-00424-7
  • [3] Colin Guillarmou and Sergiu Moroianu, Chern-Simons line bundle on Teichmüller space, Geom. Topol. 18 (2014), no. 1, 327-377. MR 3159164, https://doi.org/10.2140/gt.2014.18.327
  • [4] C. Guillarmou, S. Moroianu, J.-M. Schlenker, The renormalized volume and uniformization of conformal structures, preprint arXiv:1211.6705.
  • [5] M. Henningson and K. Skenderis, The holographic Weyl anomaly, J. High Energy Phys. 7 (1998), Paper 23, 12 pp. (electronic). MR 1644988 (99f:81162), https://doi.org/10.1088/1126-6708/1998/07/023
  • [6] Zheng Huang and Biao Wang, On almost-Fuchsian manifolds, Trans. Amer. Math. Soc. 365 (2013), no. 9, 4679-4698. MR 3066768, https://doi.org/10.1090/S0002-9947-2013-05749-2
  • [7] Kirill Krasnov, Holography and Riemann surfaces, Adv. Theor. Math. Phys. 4 (2000), no. 4, 929-979. MR 1867510 (2002k:81230)
  • [8] Kirill Krasnov and Jean-Marc Schlenker, On the renormalized volume of hyperbolic 3-manifolds, Comm. Math. Phys. 279 (2008), no. 3, 637-668. MR 2386723 (2010g:53144), https://doi.org/10.1007/s00220-008-0423-7
  • [9] Jean-Marc Schlenker, The renormalized volume and the volume of the convex core of quasifuchsian manifolds, Math. Res. Lett. 20 (2013), no. 4, 773-786. MR 3188032, https://doi.org/10.4310/MRL.2013.v20.n4.a12
  • [10] Leon A. Takhtajan and Lee-Peng Teo, Liouville action and Weil-Petersson metric on deformation spaces, global Kleinian reciprocity and holography, Comm. Math. Phys. 239 (2003), no. 1-2, 183-240. MR 1997440 (2005c:32021), https://doi.org/10.1007/s00220-003-0878-5
  • [11] P. G. Zograf and L. A. Takhtadzhyan, On the uniformization of Riemann surfaces and on the Weil-Petersson metric on the Teichmüller and Schottky spaces, Mat. Sb. (N.S.) 132(174) (1987), no. 3, 304-321, 444 (Russian); English transl., Math. USSR-Sb. 60 (1988), no. 2, 297-313. MR 889594 (88i:32031)
  • [12] Karen K. Uhlenbeck, Closed minimal surfaces in hyperbolic $ 3$-manifolds, Seminar on minimal submanifolds, Ann. of Math. Stud., vol. 103, Princeton Univ. Press, Princeton, NJ, 1983, pp. 147-168. MR 795233 (87b:53093)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 30F60

Retrieve articles in all journals with MSC (2010): 30F60


Additional Information

Corina Ciobotaru
Affiliation: Section de Mathématiques, Université de Genève, 2-4 rue du Lièvre, CP 64, 1211 Genève 4, Switzerland
Email: corina.ciobotaru@unige.ch

Sergiu Moroianu
Affiliation: Institutul de Matematică al Academiei Române, P.O. Box 1-764, RO-014700 Bucharest, Romania
Email: moroianu@alum.mit.edu

DOI: https://doi.org/10.1090/proc/12682
Received by editor(s): September 22, 2014
Received by editor(s) in revised form: November 25, 2014
Published electronically: June 9, 2015
Additional Notes: The first author was supported by the FRIA
The second author was partially supported by the CNCS project PN-II-RU-TE-2011-3-0053
Communicated by: Michael Wolf
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society