Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

Request Permissions   Purchase Content 
 
 

 

Semiorthogonal decompositions for twisted grassmannians


Author: Sanghoon Baek
Journal: Proc. Amer. Math. Soc. 144 (2016), 1-5
MSC (2010): Primary 14C35, 14F05; Secondary 18E30, 14M15
DOI: https://doi.org/10.1090/proc/12882
Published electronically: September 15, 2015
MathSciNet review: 3415571
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this article, we present semiorthogonal decompositions for
twisted forms of grassmannians.


References [Enhancements On Off] (What's this?)

  • [1] A. A. Beĭlinson, Coherent sheaves on $ {\bf P}^{n}$ and problems in linear algebra, Funktsional. Anal. i Prilozhen. 12 (1978), no. 3, 68-69 (Russian). MR 509388 (80c:14010b)
  • [2] Marcello Bernardara, A semiorthogonal decomposition for Brauer-Severi schemes, Math. Nachr. 282 (2009), no. 10, 1406-1413. MR 2571702 (2010k:14021), https://doi.org/10.1002/mana.200610826
  • [3] A. I. Bondal, Representations of associative algebras and coherent sheaves, Izv. Akad. Nauk SSSR Ser. Mat. 53 (1989), no. 1, 25-44 (Russian); English transl., Math. USSR-Izv. 34 (1990), no. 1, 23-42. MR 992977 (90i:14017)
  • [4] A. I. Bondal and M. M. Kapranov, Representable functors, Serre functors, and reconstructions, Izv. Akad. Nauk SSSR Ser. Mat. 53 (1989), no. 6, 1183-1205, 1337 (Russian); English transl., Math. USSR-Izv. 35 (1990), no. 3, 519-541. MR 1039961 (91b:14013)
  • [5] M. M. Kapranov, On the derived categories of coherent sheaves on some homogeneous spaces, Invent. Math. 92 (1988), no. 3, 479-508. MR 939472 (89g:18018), https://doi.org/10.1007/BF01393744
  • [6] D. O. Orlov, Projective bundles, monoidal transformations, and derived categories of coherent sheaves, Izv. Ross. Akad. Nauk Ser. Mat. 56 (1992), no. 4, 852-862 (Russian, with Russian summary); English transl., Russian Acad. Sci. Izv. Math. 41 (1993), no. 1, 133-141. MR 1208153 (94e:14024), https://doi.org/10.1070/IM1993v041n01ABEH002182
  • [7] Marc Levine, V. Srinivas, and Jerzy Weyman, $ K$-theory of twisted Grassmannians, $ K$-Theory 3 (1989), no. 2, 99-121. MR 1029954 (91b:14007), https://doi.org/10.1007/BF00533374
  • [8] I. A. Panin, Algebraic $ K$-theory of Grassmannian manifolds and their twisted forms, Funktsional. Anal. i Prilozhen. 23 (1989), no. 2, 71-72 (Russian); English transl., Funct. Anal. Appl. 23 (1989), no. 2, 143-144. MR 1011365 (90m:14010), https://doi.org/10.1007/BF01078789

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 14C35, 14F05, 18E30, 14M15

Retrieve articles in all journals with MSC (2010): 14C35, 14F05, 18E30, 14M15


Additional Information

Sanghoon Baek
Affiliation: Department of Mathematical Sciences, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701, Republic of Korea
Email: sanghoonbaek@kaist.ac.kr

DOI: https://doi.org/10.1090/proc/12882
Received by editor(s): March 11, 2013
Published electronically: September 15, 2015
Communicated by: Harm Derksen
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society