Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The upper and lower bounds on non-real eigenvalues of indefinite Sturm-Liouville problems


Authors: Jiangang Qi, Bing Xie and Shaozhu Chen
Journal: Proc. Amer. Math. Soc. 144 (2016), 547-559
MSC (2010): Primary 34B24, 34L15; Secondary 47B50
DOI: https://doi.org/10.1090/proc/12854
Published electronically: July 29, 2015
MathSciNet review: 3430833
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The present paper gives a priori upper and lower bounds on non-real eigenvalues of regular indefinite Sturm-Liouville problems only under the integrability conditions. More generally, a lower bound on non-real eigenvalues of the self-adjoint operator in Krein space is obtained.


References [Enhancements On Off] (What's this?)

  • [1] F.V. Atkinson, D. Jabon, Indefinite Sturm-Liouville problems, in ``Proceedings of the Focused Research Program on Spectral Theory and Boundary Value Problems'', Vol.I, H. Kaper, M.-K. Kwong, and A. Zettl (Eds.), Argonne National Laboratory, Lemont, IL, USA, 1988, pp. 31-45.
  • [2] Jussi Behrndt, Shaozhu Chen, Friedrich Philipp, and Jiangang Qi, Estimates on the non-real eigenvalues of regular indefinite Sturm-Liouville problems, Proc. Roy. Soc. Edinburgh Sect. A 144 (2014), no. 6, 1113-1126. MR 3283062, https://doi.org/10.1017/S0308210513001212
  • [3] Jussi Behrndt, Friedrich Philipp, and Carsten Trunk, Bounds on the non-real spectrum of differential operators with indefinite weights, Math. Ann. 357 (2013), no. 1, 185-213. MR 3084346, https://doi.org/10.1007/s00208-013-0904-7
  • [4] Jussi Behrndt, Qutaibeh Katatbeh, and Carsten Trunk, Non-real eigenvalues of singular indefinite Sturm-Liouville operators, Proc. Amer. Math. Soc. 137 (2009), no. 11, 3797-3806. MR 2529889 (2010h:47008), https://doi.org/10.1090/S0002-9939-09-09964-X
  • [5] Paul Binding and Hans Volkmer, Eigencurves for two-parameter Sturm-Liouville equations, SIAM Rev. 38 (1996), no. 1, 27-48. MR 1379040 (97f:34015), https://doi.org/10.1137/1038002
  • [6] R. C. Brown and D. B. Hinton, Sufficient conditions for weighted inequalities of sum form, J. Math. Anal. Appl. 112 (1985), no. 2, 563-578. MR 813620 (87d:26017), https://doi.org/10.1016/0022-247X(85)90263-X
  • [7] Branko Ćurgus and Heinz Langer, A Kreĭn space approach to symmetric ordinary differential operators with an indefinite weight function, J. Differential Equations 79 (1989), no. 1, 31-61. MR 997608 (90j:47060), https://doi.org/10.1016/0022-0396(89)90112-5
  • [8] J. Fleckinger and A. B. Mingarelli, On the eigenvalues of nondefinite elliptic operators, Differential equations (Birmingham, Ala., 1983) North-Holland Math. Stud., vol. 92, North-Holland, Amsterdam, 1984, pp. 219-227. MR 799351 (86j:35072), https://doi.org/10.1016/S0304-0208(08)73696-X
  • [9] Otto Haupt, Über eine Methode zum Beweise von Oszillationstheoremen, Math. Ann. 76 (1914), no. 1, 67-104 (German). MR 1511814, https://doi.org/10.1007/BF01458673
  • [10] Q. Kong, H. Wu, A. Zettl, and M. Möller, Indefinite Sturm-Liouville problems, Proc. Roy. Soc. Edinburgh Sect. A 133 (2003), no. 3, 639-652. MR 1983691 (2004f:34039), https://doi.org/10.1017/S0308210500002584
  • [11] Angelo B. Mingarelli, Indefinite Sturm-Liouville problems, Ordinary and partial differential equations (Dundee, 1982) Lecture Notes in Math., vol. 964, Springer, Berlin-New York, 1982, pp. 519-528. MR 693136 (84f:34037)
  • [12] Angelo B. Mingarelli, A survey of the regular weighted Sturm-Liouville problem--the nondefinite case, International workshop on applied differential equations (Beijing, 1985), World Sci. Publishing, Singapore, 1986, pp. 109-137. MR 901329
  • [13] Jiangang Qi and Shaozhu Chen, A priori bounds and existence of non-real eigenvalues of indefinite Sturm-Liouville problems, J. Spectr. Theory 4 (2014), no. 1, 53-63. MR 3181385, https://doi.org/10.4171/JST/61
  • [14] R. G. D. Richardson, Theorems of oscillation for two linear differential equations of the second order with two parameters, Trans. Amer. Math. Soc. 13 (1912), no. 1, 22-34. MR 1500902, https://doi.org/10.2307/1988611
  • [15] R. G. D. Richardson, Contributions to the study of oscillation properties of the solutions of linear differential equations of the second order, Amer. J. Math. 40 (1918), no. 3, 283-316. MR 1506360, https://doi.org/10.2307/2370485
  • [16] Lawrence Turyn, Sturm-Liouville problems with several parameters, J. Differential Equations 38 (1980), no. 2, 239-259. MR 597803 (82d:34036), https://doi.org/10.1016/0022-0396(80)90007-8
  • [17] Bing Xie and Jiangang Qi, Non-real eigenvalues of indefinite Sturm-Liouville problems, J. Differential Equations 255 (2013), no. 8, 2291-2301. MR 3082462, https://doi.org/10.1016/j.jde.2013.06.013
  • [18] Bing Xie, Jiangang Qi, and Shaozhu Chen, Non-real eigenvalues of one dimensional $ p$-Laplacian with indefinite weight, Appl. Math. Lett. 48 (2015), 143-149. MR 3348958, https://doi.org/10.1016/j.aml.2015.04.005
  • [19] Anton Zettl, Sturm-Liouville theory, Mathematical Surveys and Monographs, vol. 121, American Mathematical Society, Providence, RI, 2005. MR 2170950 (2007a:34005)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 34B24, 34L15, 47B50

Retrieve articles in all journals with MSC (2010): 34B24, 34L15, 47B50


Additional Information

Jiangang Qi
Affiliation: Department of Mathematics, Shandong University, Weihai 264209, People’s Republic of China
Email: qijiangang@sdu.edu.cn

Bing Xie
Affiliation: Department of Mathematics, Shandong University, Weihai 264209, People’s Republic of China
Email: xiebing@sdu.edu.cn

Shaozhu Chen
Affiliation: Department of Mathematics, Shandong University, Weihai 264209, People’s Republic of China
Email: szchen@sdu.edu.cn

DOI: https://doi.org/10.1090/proc/12854
Keywords: Indefinite Sturm-Liouville problem, Krein space, non-real eigenvalue, a priori bounds.
Received by editor(s): September 28, 2014
Received by editor(s) in revised form: December 22, 2014
Published electronically: July 29, 2015
Additional Notes: The first author was supported in part by the NSF of Shandong Province Grant #ZR2012AM002, and the NSF of China Grants #11471191 and #11101241.
The second author is the corresponding author
The third author was supported in part by the NSF of China Grant #11271229 and the SFPIP of Shandong Province Grant #201301010.
Communicated by: Nimish Shah
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society