Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Isovariant homotopy equivalences of manifolds with group actions


Author: Reinhard Schultz
Journal: Proc. Amer. Math. Soc. 144 (2016), 1363-1370
MSC (2010): Primary 55P91, 57S17; Secondary 55R91
DOI: https://doi.org/10.1090/proc/12795
Published electronically: August 11, 2015
MathSciNet review: 3447686
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ f$ be an equivariant homotopy equivalence $ f$ of connected closed manifolds with smooth semifree actions of a finite group $ G$, and assume also that $ f$ is isovariant. The main result states that $ f$ is a homotopy equivalence in the category of isovariant mappings if the manifolds satisfy a Codimension $ \geq 3$ Gap Hypothesis; this is done by showing directly that $ f$ satisfies the criteria in the Isovariant Whitehead Theorem of G. Dula and the author. Examples are given to show the need for the hypotheses in the main result.


References [Enhancements On Off] (What's this?)

  • [1] Aaron Christian Beshears, G-isovariant structure sets and stratified structure sets, ProQuest LLC, Ann Arbor, MI, 1997. Thesis (Ph.D.)-Vanderbilt University. MR 2695560
  • [2] Glen E. Bredon, Introduction to compact transformation groups, Academic Press, New York-London, 1972. Pure and Applied Mathematics, Vol. 46. MR 0413144 (54 #1265)
  • [3] Glen E. Bredon, Sheaf theory, 2nd ed., Graduate Texts in Mathematics, vol. 170, Springer-Verlag, New York, 1997. MR 1481706 (98g:55005)
  • [4] W. Browder, Isovariant homotopy equivalence, Abstracts Amer. Math. Soc. 8 (1987), 237-238.
  • [5] William Browder and Frank Quinn, A surgery theory for $ G$-manifolds and stratified sets, Manifolds--Tokyo 1973 (Proc. Internat. Conf., Tokyo, 1973) Univ. Tokyo Press, Tokyo, 1975, pp. 27-36. MR 0375348 (51 #11543)
  • [6] Sylvain E. Cappell, A splitting theorem for manifolds, Invent. Math. 33 (1976), no. 2, 69-170. MR 0438359 (55 #11274)
  • [7] Michael Davis, Smooth $ G$-manifolds as collections of fiber bundles, Pacific J. Math. 77 (1978), no. 2, 315-363. MR 510928 (80b:57034)
  • [8] Giora Dula and Reinhard Schultz, Diagram cohomology and isovariant homotopy theory, Mem. Amer. Math. Soc. 110 (1994), no. 527, viii+82. MR 1209409 (95a:55028), https://doi.org/10.1090/memo/0527
  • [9] André Haefliger and Valentin Poenaru, La classification des immersions combinatoires, Inst. Hautes Études Sci. Publ. Math. 23 (1964), 75-91 (French). MR 0172296 (30 #2515)
  • [10] Soren Arnold Illman, Equivariant algebraic topology, ProQuest LLC, Ann Arbor, MI, 1972. Thesis (Ph.D.)-Princeton University. MR 2622205
  • [11] Sören Illman, Smooth equivariant triangulations of $ G$-manifolds for $ G$ a finite group, Math. Ann. 233 (1978), no. 3, 199-220. MR 0500993 (58 #18474)
  • [12] Takao Matumoto, On $ G$-$ {\rm CW}$ complexes and a theorem of J. H. C. Whitehead, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 18 (1971), 363-374. MR 0345103 (49 #9842)
  • [13] Richard S. Palais, The classification of $ G$-spaces, Mem. Amer. Math. Soc. No. 36, 1960. MR 0177401 (31 #1664)
  • [14] Reinhard Schultz, Differentiable group actions on homotopy spheres. I. Differential structure and the knot invariant, Invent. Math. 31 (1975), no. 2, 105-128. MR 0405471 (53 #9264)
  • [15] Reinhard Schultz, Isovariant homotopy theory and differentiable group actions, Algebra and topology 1992 (Taejŏn), Korea Adv. Inst. Sci. Tech., Taejŏn, 1992, pp. 81-148. MR 1212981 (94i:57056)
  • [16] Sandor Howard Straus, Equivariant codimension one surgery, ProQuest LLC, Ann Arbor, MI, 1972. Thesis (Ph.D.)-University of California, Berkeley. MR 2940154
  • [17] D. W. Sumners, Smooth $ Z_{p}$-actions on spheres which leave knots pointwise fixed, Trans. Amer. Math. Soc. 205 (1975), 193-203. MR 0372893 (51 #9097)
  • [18] C. T. C. Wall, Surgery on compact manifolds, 2nd ed., Mathematical Surveys and Monographs, vol. 69, American Mathematical Society, Providence, RI, 1999. Edited and with a foreword by A. A. Ranicki. MR 1687388 (2000a:57089)
  • [19] Shmuel Weinberger, The topological classification of stratified spaces, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1994. MR 1308714 (96b:57024)
  • [20] George W. Whitehead, Elements of homotopy theory, Graduate Texts in Mathematics, vol. 61, Springer-Verlag, New York-Berlin, 1978. MR 516508 (80b:55001)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 55P91, 57S17, 55R91

Retrieve articles in all journals with MSC (2010): 55P91, 57S17, 55R91


Additional Information

Reinhard Schultz
Affiliation: Department of Mathematics, University of California at Riverside, Riverside, California 92521
Email: schultz@math.ucr.edu

DOI: https://doi.org/10.1090/proc/12795
Received by editor(s): January 20, 2015
Received by editor(s) in revised form: March 17, 2015
Published electronically: August 11, 2015
Communicated by: Michael A. Mandell
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society