Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

Request Permissions   Purchase Content 
 
 

 

Chromatic completion


Author: Tobias Barthel
Journal: Proc. Amer. Math. Soc. 144 (2016), 2263-2274
MSC (2010): Primary 55P42, 55P60
DOI: https://doi.org/10.1090/proc/12867
Published electronically: September 11, 2015
MathSciNet review: 3460184
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study the limit of the chromatic tower for arbitrary spectra, obtaining a generalization of the chromatic convergence theorem of Hopkins and Ravenel. Moreover, we prove that in general this limit does not coincide with harmonic localization, thereby answering a question of Ravenel's.


References [Enhancements On Off] (What's this?)

  • [1] Maria Basterra and Michael A. Mandell, The multiplication on BP, J. Topol. 6 (2013), no. 2, 285-310. MR 3065177, https://doi.org/10.1112/jtopol/jts032
  • [2] A. K. Bousfield, On $ K(n)$-equivalences of spaces, Homotopy invariant algebraic structures (Baltimore, MD, 1998) Contemp. Math., vol. 239, Amer. Math. Soc., Providence, RI, 1999, pp. 85-89. MR 1718077 (2001k:55013), https://doi.org/10.1090/conm/239/03598
  • [3] A. K. Bousfield and D. M. Kan, Homotopy limits, completions and localizations, Lecture Notes in Mathematics, Vol. 304, Springer-Verlag, Berlin-New York, 1972. MR 0365573 (51 #1825)
  • [4] Carles Casacuberta and Armin Frei, Localizations as idempotent approximations to completions, J. Pure Appl. Algebra 142 (1999), no. 1, 25-33. MR 1716044 (2000f:18006), https://doi.org/10.1016/S0022-4049(98)00074-7
  • [5] P. E. Conner and Larry Smith, On the complex bordism of finite complexes, Inst. Hautes Études Sci. Publ. Math. 37 (1969), 117-221. MR 0267571 (42 #2473)
  • [6] A. D. Elmendorf, I. Kriz, M. A. Mandell, and J. P. May, Rings, modules, and algebras in stable homotopy theory, Mathematical Surveys and Monographs, vol. 47, American Mathematical Society, Providence, RI, 1997. With an appendix by M. Cole. MR 1417719 (97h:55006)
  • [7] Sabah Fakir, Monade idempotente associée à une monade, C. R. Acad. Sci. Paris Sér. A-B 270 (1970), A99-A101 (French). MR 0257174 (41 #1828)
  • [8] Michael J. Hopkins and Douglas C. Ravenel, Suspension spectra are harmonic, Bol. Soc. Mat. Mexicana (2) 37 (1992), no. 1-2, 271-279. Papers in honor of José Adem (Spanish). MR 1317578 (95j:55024)
  • [9] David Copeland Johnson and W. Stephen Wilson, Projective dimension and Brown-Peterson homology, Topology 12 (1973), 327-353. MR 0334257 (48 #12576)
  • [10] David Copeland Johnson and W. Stephen Wilson, The projective dimension of the complex bordism of Eilenberg-MacLane spaces, Osaka J. Math. 14 (1977), no. 3, 533-536. MR 0467731 (57 #7584)
  • [11] David Copeland Johnson and W. Stephen Wilson, The Brown-Peterson homology of elementary $ p$-groups, Amer. J. Math. 107 (1985), no. 2, 427-453. MR 784291 (86j:55008), https://doi.org/10.2307/2374422
  • [12] John R. Klein, Moduli of suspension spectra, Trans. Amer. Math. Soc. 357 (2005), no. 2, 489-507. MR 2095620 (2005m:55015), https://doi.org/10.1090/S0002-9947-04-03474-9
  • [13] S. O. Kochman, Bordism, stable homotopy and Adams spectral sequences, Fields Institute Monographs, vol. 7, American Mathematical Society, Providence, RI, 1996. MR 1407034 (97i:55017)
  • [14] Nicholas J. Kuhn, Suspension spectra and homology equivalences, Trans. Amer. Math. Soc. 283 (1984), no. 1, 303-313. MR 735424 (85g:55014), https://doi.org/10.2307/2000005
  • [15] Peter S. Landweber, New applications of commutative algebra to Brown-Peterson homology, Algebraic topology, Waterloo, 1978 (Proc. Conf., Univ. Waterloo, Waterloo, Ont., 1978) Lecture Notes in Math., vol. 741, Springer, Berlin, 1979, pp. 449-460. MR 557180 (81b:55011)
  • [16] Mark Mahowald and Hal Sadofsky, $ v_n$ telescopes and the Adams spectral sequence, Duke Math. J. 78 (1995), no. 1, 101-129. MR 1328754 (96h:55006), https://doi.org/10.1215/S0012-7094-95-07806-5
  • [17] Haynes Miller, Finite localizations, Bol. Soc. Mat. Mexicana (2) 37 (1992), no. 1-2, 383-389. Papers in honor of José Adem (Spanish). MR 1317588 (96h:55009)
  • [18] Stewart Priddy, A cellular construction of BP and other irreducible spectra, Math. Z. 173 (1980), no. 1, 29-34. MR 584347 (81i:55006), https://doi.org/10.1007/BF01215522
  • [19] Douglas C. Ravenel, Localization with respect to certain periodic homology theories, Amer. J. Math. 106 (1984), no. 2, 351-414. MR 737778 (85k:55009), https://doi.org/10.2307/2374308
  • [20] Douglas C. Ravenel, Nilpotence and periodicity in stable homotopy theory, Annals of Mathematics Studies, vol. 128, Princeton University Press, Princeton, NJ, 1992. Appendix C by Jeff Smith. MR 1192553 (94b:55015)
  • [21] W. Stephen Wilson, The $ \Omega $-spectrum for Brown-Peterson cohomology. I, Comment. Math. Helv. 48 (1973), 45-55; corrigendum, ibid. 48 (1973), 194. MR 0326712 (48 #5055)
  • [22] W. Stephen Wilson, The $ \Omega $-spectrum for Brown-Peterson cohomology. II, Amer. J. Math. 97 (1975), 101-123. MR 0383390 (52 #4271)
  • [23] W. Stephen Wilson, $ K(n+1)$ equivalence implies $ K(n)$ equivalence, Homotopy invariant algebraic structures (Baltimore, MD, 1998) Contemp. Math., vol. 239, Amer. Math. Soc., Providence, RI, 1999, pp. 375-376. MR 1718090 (2000i:55021), https://doi.org/10.1090/conm/239/03611
  • [24] Amnon Yekutieli, On flatness and completion for infinitely generated modules over Noetherian rings, Comm. Algebra 39 (2011), no. 11, 4221-4245. MR 2855123 (2012k:13058), https://doi.org/10.1080/00927872.2010.522159

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 55P42, 55P60

Retrieve articles in all journals with MSC (2010): 55P42, 55P60


Additional Information

Tobias Barthel
Affiliation: Max Planck Institute for Mathematics, Bonn, Germany
Email: tbarthel@mpim-bonn.mpg.de

DOI: https://doi.org/10.1090/proc/12867
Received by editor(s): January 2, 2015
Received by editor(s) in revised form: May 12, 2015
Published electronically: September 11, 2015
Communicated by: Michael A. Mandell
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society